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Abstract: Sinter composition optimization is an important process of iron and steel companies. To
increase companies’ profits, they often rely on innovative technology or the workers’ operating
experience to improve final productions. However, the former is costly because of patents, and the
latter is error-prone. In addition, traditional linear programming optimization methods of sinter
compositions are inefficient in the face of large-scale problems and complex nonlinear problems. In
this paper, we are the first to propose a regressive convolutional neural network (RCNN) approach
for the sinter composition optimization (SCORN). Our SCORN is a single input and multiple outputs
regression model. Sinter plant production is used as the input of the SCORN model, and the outputs
are the optimized sintering compositions. The SCORN model can predict the optimal sintering
compositions to reduce the input of raw materials consumption to save costs and increase profits.
By constructing a new neural network structure, the RCNN model is trained to increase its feature
extraction capability for sintering production. The SCORN model has a better performance compared
with several regressive approaches. The practical application of this predictive model can not only
formulate corresponding production plans without feeding materials but also give better input
parameters of sintered raw materials during the sintering process.

Keywords: sinter; composition optimization; regressive CNN; multiple output regression

1. Introduction

Sinter has always been an important part of the steel-making process in a sintering
plant. Sintering technology is a complex thermo-chemical and energy-intensive process,
and the price of its raw material—iron ore—has always been high. As a result, how to con-
trol costs and improve profits are the core issues that can affect the survival of sinter plant
enterprises [1,2]. Research on sinter composition optimization is an extremely important
field of sinter mineralogy, and the quality of ingredients affects the final sinter quality. In
most practical cases, the proportion of sinter ore is limited by manual experience, which is
subjective. It is also difficult to obtain the optimal material ratio due to the contradiction
among the constraints [3]. The sintering process modeling method and linear programming
are widely used to address this challenge. However, one problem is that there are many
nonlinear factors that need to be considered in the batch optimization model [4]. With
the development of the research on the sintering process, mineral varieties are increasing.
The number of chemical composition control projects is also increasing. Because sintering
mixtures are complex, it is difficult to change one parameter independently of others, and
the introduction of new parameters into the optimization model can simultaneously change
all parameters [5], which is time-consuming and tedious to calculate.

In this paper, we propose a new sinter compositions optimization model using a
regressive convolutional neural network (SCORN). We develop a new regressive convolu-
tional neural network (RCNN) structure from given datasets to obtain the optimal sintering
material compositions. By using the production history data of a mining company in China,
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our SCORN model can predict the optimal sinter compositions. The proposed SCORN
model includes feature extraction and prediction modules. Unlike conventional machine
learning tools and CNNSs, the input is only a single number (production), and the output is
the corresponding chemical indexes of the final sinter. This model is a multi-output model,
and the final sintering ratio scheme consists of multiple indicators. Our contributions are
two-fold:

1.  We are the first to develop a regressive convolutional neural network for the sinter
composition optimization problem. In our SCORN model, the input is the single final
sintering production, and outputs are the corresponding chemical compositions of
the sintered product. SCORN is a single input and multiple outputs RCNN model.

2. We have collected sinter production and its burdening compositions from sintering
machines in one sintering plant in China. Experimental results indicate that our
SCORN model can produce an optimal sinter burdening ratio given a target produc-
tion. SCORN also achieves higher performance than several regressive approaches.

Our paper aims to extract features from sinter production data to predict optimal
sinter compositions of that production. Because of the single input data, the RCNN
architecture needs to be efficient and accurate to extract the key features. Therefore,
linear programming and intelligent optimization algorithms for solving multivariate input
problems are ineffective in our problem.

The rest of the paper is organized as follows. Section 2 provides an overview of related
work for sinter optimization. The description of the sintering process and characteristic
indexes are mentioned and summarized in Section 3. Section 4 provides details about
the proposed methods, including structure and evaluation methods. Section 5 provides a
detailed evaluation of the SCORN with a solid comparison with other regressive methods
on the same sinter datasets. This section is further divided into subsections to describe the
details of the dataset and the experimental setup for the traditional approaches. Section 6
discusses the model, including advantages and disadvantages, as well as practical appli-
cations and extensions. Finally, Section 7 concludes the paper and outlines directions for
possible future work.

2. Related Work

In the past few decades, scholars have carried out many research methods to optimize
various iron ore sinter indicators to improve the sintering performance and reduce the cost.

2.1. Mathematical Statistical Models

Many studies have attempted to address the question of predicting sinter quality, prop-
erties, and productivity. Many sinter models have been constructed based on mathematical-
statistical methods. Eugene et al. [6] presented a mathematical modeling method to predict
sinter properties. This method reflected the variation in sinter properties using explanatory
variables and optimized different iron ore blends to produce target sinter characteristics.
Zhang et al. [7] developed an unsteady two-dimensional mathematical model for the iron
ore sintering process and predicted sinter yield and strength by the method of numerical
simulation. In view of the large time lag in the detection of sinter, Li et al. [8] verified the
relationship between the chemical compositions of the sintering raw material and the phys-
ical and metallurgical properties of the sinter through correlation analysis. However, the
aforementioned mathematical models are mainly optimized from the aspects of sintering
process parameters and properties and do not consider many other factors in the sintering
process. Due to the difference between ideal models and actual processes, they are difficult
to apply to industrial processes.

2.2. Machine Learning

Various machine learning tools and intelligent optimization algorithms are increasingly
used in the sinter process research. Support vector machines, BP neural network models,
and general regression neural network [9] models have been applied as prediction models
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for basic sintering characteristics and sinter quality of mixed iron ore. Arghya et al. [10]
associated the sinter plant process parameters with required mechanical properties and
microstructure to obtain higher productivity with the help of ANN and genetic algorithms.
Kunnunen et al. [11] shed light on how neural networks were used to model and optimize
physical indexes of sinter. Yuan et al. [12] applied a deep belief network algorithm to
predict the secondary chemical composition of the sinter by analyzing the technology
mechanism and characteristics of the sintering process. Machine learning methods have
been widely used in the field of the sintering process to optimize the relevant indicators.
Most deep neural networks address the detection [13-15] and classification [16] problems
in the sintering process. Frei et al. [17] proposed a novel deep learning-based method for
the pixel-perfect detection and the measurement of partially sintered particles. It is difficult
for shallow learning algorithms to effectively represent complex nonlinear functions when
the number of given samples is limited. The generalization ability is also limited, which
affects the prediction results of the sinter composition optimization problem.

Deep learning is a branch of machine learning and relies on a large amount of data to
build models that estimate the patterns of the data. Over the past two decades, CNNs have
relied on the hidden layer structure to automatically extract deep features, which achieved
promising results in a wide range of vision applications and domains such as image
denoising, image detection, and classification [18]. Le and Ho [19] presented a novel method
to predict DNA 6 mA sites from the cross-species genome based on deep transformers
architecture and CNN with DNA sequence as input. Le and Nguyen [20] proposed a
method to identify FMN binding sites in electron transport chains using a 2-D CNN
constructed from position-specific scoring matrices (PSSM). The proposed method can also
facilitate the application of deep learning to deal with various problems in bioinformatics
and computational biology. Aziz et al. [21] developed a new technique of Channel Boosted
Convolutional Neural Network (CB-CNN) to classify breast canter mitotic nuclei. This
method improves the generalization of a CNN by making the feature space more versatile
and flexible.

2.3. Sinter Compositions

Existing works try to optimize the sinter composition and reduce the cost of the
sintering process. Efforts are being made to resolve the proportioning issues associated
with the sintering process. Based on the micro-sintering experiment [22], the principle
of ore blending is put forward according to its high-temperature characteristics. Then
the ore blending is optimized. Linear programming (LP) and nonlinear programming
(NLP) methods are also commonly used for evolutionary optimization of blast furnace
charging ratios and operating parameters [23-26]. Most of these methods used the cost as
an objective function, but in practice, the optimization objective is often multi-fold, making
it challenging to meet the requirements of the sintering process. Liu et al. [27] proposed
a real-time monitoring model and advanced prediction of sinter composition based on
a DNN and LSTM regression. Taking the lowest cost of sinter as the objective function,
Wang and Hu [4] established a comprehensive optimization model of sinter batching and
solved it with the particle swarm algorithm (PSO). Dai and Zhen [3] established a genetic
chickens hybrid algorithm based on linear programming, which is used in the first and
second compositions optimization of the sintering process. Wu et al. [28] developed an
intelligent integrated optimization system (IIOS) for the sintering ratio step to find the
best feasible proportion regimen. The optimal burdening ratio method using intelligent
optimization algorithms has been extensively studied, including SA (simulated annealing
algorithms), EA (evolutionary algorithms), PSO algorithms, ACA (ant colony algorithms),
etc. However, they all have a common problem. These algorithms converged quickly at
first but then became slower, making it easy to obtain the locally optimal solution [29-31].
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3. Sintering Process and Characteristic Indexes

This section briefly describes the sintering process and explains the physical and
chemical characteristic indexes for sintered final products.

3.1. Description of Sintering Process

The entire sintering preparation process is complex, mainly including three steps:
batching, mixing, and sintering. In the sintering batching stage, the chemical raw materials
of sintered ore and other materials are mixed in a certain proportion. After the mixing
stage, contents are evenly mixed with water and then sent to the sinter machine to generate
sintered ore. The sintering process undergoes complex physical and chemical changes, and
the entire process can take up to two hours or more [32]. Figure 1 shows the main material
flows in the sintering process.

Returned .
Iron ore mix Coke Limestone

Undersized sinter sinfer

BAYAYAVAW S

Moving pallet
— Mixing drum
X
Qd bin
Qualified Moving pallet
Blast sinter B @ Roller feeder
|
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Figure 1. Material flows in the sintering process

3.2. Sinter Characteristic Indexes

The indexes of iron ore characteristics are selected from the following two aspects.

3.2.1. Chemical Index

The chemical index mainly consists of two parts. Firstly, the chemical composition
part of sinter generally includes TFe, SiOp, MgO, Al,O3, CaO, S, and FeO. Secondly, other
indexes are Ro and total iron ore. Ro is expressed as the ratio of calcium oxide content
to silica content in the sinter. The total amount of sinter represents the sum of the total
chemical components of the sinter.

3.2.2. Physical Index

Screening is defined as the percentage of sintered ore smaller than the standard
specified particle size (—5 mm) in the total weight of the sample after the sample is screened.
The drum index is defined as the percentage of the weight of a sample with a particle size
larger than the specified standard to the total weight of the sample. Table 1 shows the
characteristic information iron ore, which is mainly composed of chemical indicators.
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Table 1. Statistics for sintering compositions

Factors Field Unit Average/Year Change Range
TFe % 56.2 53.9-58.6
FeO % 8.8 5.5-12.3
SiO; % 5.7 4.7-6.4
CaO % 11.6 9.7-13.7
Chemical compositions RO - 2 1.6-2.3
MgO % 15 0.9-2.1
S % 0.026 0.002-0.063
AL, O3 % 1.23 0.19-1.98
Total iron ore in the sinter - 98.35 96.88-99.80
4. Methods

4.1. Motivation

In the pre-iron process for iron and steel enterprises, an efficient and accurate grasping
of the current sinter composition is of great significance for guiding blast furnace production.
The metallogenetic process of the sintering mixture is complex. It is difficult to accurately
obtain the optimal sintering compositions corresponding to the mixture through mechanism
calculation. Statistics-based machine learning methods can rely on large-scale data to obtain
areliable prediction model. The feature extraction depends more on the hidden layer model
and is better at processing high-dimensional data. The quality of the sinter is closely related
to batching, process state, and operating parameters. Traditionally, the appropriate ratio
for sintering production is determined by chemical principles and a large number of
experiments. Then linear programming or intelligent optimization algorithms are used
to optimize it. Under industrial conditions, where production depends on the used raw
materials, there is no simple answer to the question of how a certain value is optimized. The
purpose of this study was to produce refined knowledge that would assist in the control
of the sinter composition value when the production is determined. In comparison to
conventional ANNs, RCNNs apply a largely increased number of layers, which can extract
complicated features [33]. Our research problem is an optimization task, and we aim to
optimize the sinter compositions using a RCNN given the sinter production data.

4.2. Problem

In the sinter plant, production increase often only relies on technological innovation
or skilled operation. However, it is not always reliable to depend on the experience of
operators. The results obtained by each person using these methods are not consistent, and
it is not easy to accurately control the burdening ratio of the sinter. The raw materials in
sintering production consist of many different compositions, and each composition may
have a mutual influence or correlation. Therefore, a sinter burdening ratio optimization
model based on RCNN is proposed to solve the problems. In our case, there is an unknown
relationship between target production and the chemical composition of the sinter: the
input of this model is the target production, and the output is the chemical index of the
sinter.

4.3. Notations

In the sinter composition optimization problem, given the N input target sintering
productions X = {x,})_; € RN*! its outputs are the optimized sinter compositions
Y = {yn})_, € RN*P where D is different indexes that are mentioned in Section 3.2.1.
Each instance is characterized by an input sintering production x, and an output sintering
composition y, € RD. The objective function of our proposed SCORN model is to
train a regressive convolution neural network (R) to accurately predict optimal sintering
composition given any input production as follows:
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X = {xa}Ny By = {ya (1)

4.3.1. Architecture
Our proposed SCORN model consists of two major modules [34].

1.  Feature Extraction. The feature extraction module extracts features from the simple
numerical target production for the second module. One advantage of the RCNN
architecture is that the layers are easily interchangeable, which greatly facilitates
transfer learning between layers [17].

2. Prediction. This block takes the extracted features from the previous module and
feeds them to a fully connected (FC) layer for regression prediction.

To overcome the smaller number of features of the input layer (production has the size
of 1 x 1) in the first module, we need to design an appropriate network architecture for
extracting better feature representations to model the relationship between the production
and nonlinear indexes. Notably, the input of the model is sintering production, and the
output sintering compositions come from the final connected regression layer. To achieve
better accuracy, the feature extraction structure may be used multiple times. Figure 2
shows an example of a sinter composition prediction of the SCORN model. The final
few layers can reflect completed sinter compositions. With more features extracted in the
feature extraction module, we can easily build the relationship between the model and the
predicted sinter compositions.

Output
(Compositions)

56.85 Tfe
8.70 Feo
5.46 SiO,
11.11 CaO
2.04 Ro
1.27 MgO
1.13 Al,0,
002 S
98.30 Total

Input
(Production)

Conv RelU BN AP CCN MP Drop FC

1010 ton

| |

Feature Extraction Prediction

Figure 2. The architecture of our proposed SCORN for predicting the compositions of sinter at
“production” 1010 ton (Conv: convolution, ReLU: rectified linear units, BN: Batch normalization, AP:
average pooling, CCN: cross-channel normalization, MP: max pooling, Drop: dropout and FC: fully
connected. The number of features of each layer is represented in the middle of the graph of each
layer).

Normally, CNN consists of a sequence of layers, including convolutional layers,
pooling layers, and fully connected layers. Each convolutional layer typically has two
stages. In the first stage, the layer performs the convolution operation, which results
in linear activation. In the next stage, a nonlinear activation function is applied to each
linear activation. Each feature extraction module [35] has seven layers (convolution (Conv),
rectified linear units (ReLU), batch normalization (BN), average pooling (AP), cross-channel
normalization (CCN), dropout (Drop) and max pooling (MP)). SCORN model can extract
features from the simple numerical target production and feed them into a fully connected
(FC) layer for regressive sinter composition prediction.

In the SCORN model, we employ the Conv layer to generate more features from the
previous layer (e.g., the first Conv layer has the filter size of [1, 1], number of filters: 12,
stride size of [1, 1] and zero padding. Hence, the final output size is 1 x 12). The ReLU layer
reduces the number of epochs to achieve better training error rates than traditional tanh
units. The normalization layer increases the generalization ability and reduces the error
rate. In addition, ReLU and normalization layers do not change the size of the feature map.
The pooling layer aggregates the outputs of adjacent pooling units. The dropout (Drop)
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layer randomly sets input elements to zero to prevent overfitting. The loss function of the
last regression layer is the same as our error function. One of the most obvious advantages
of the model is that more features can be extracted from the feature extraction model. By
extracting more features in the model, we can easily establish the relationship between
the model and the predicted components [36]. Therefore, the SCORN model can predict
composition at an arbitrary production.

4.3.2. Loss Function

The half sum-of-squared errors in Equation (2) has been employed as an indicator of
the discrepancy between the actual y, and the predicted output yln. By reducing the error
between the actual and the predicted value, the SCORN model can predict the sintering
compositions.

[Yn — yn)? @)

M=

1
E:—
2n1

4.4. Model Evaluation

To illustrate the significance of the SCORN model, we focus not only on the fitting
effect of the model but also on the error values between the predicted value and the real
value. Therefore, the extended R?, root mean square error (RMSE), and mean absolute
error (MAE) were used to evaluate the model, as in Equations (3)—(5).

R2—1_ Unexplained‘va?fiation —1_ Yoy Sresialuul, where
Total variation ZnN:1 Stotal
; 2 5 ) ®)
Sresidual = Z (ynd - y;’ld) Stotal = Z (ynd - ]/-d)
d=1 =1
D N
RMSE = 5 2 Z Ynd = Yra)? @
MAE = —— Z Z Ynd = Y ©®)
n ld=

In these formulas, y,,; is the actual value of the dth data point, and y;l ; is the predicted
value. N is the number of samples in the sinter composition. D is the number of composition
indexes of the sintering process. The R? statistic has been shown to be a useful indicator
of the significance of the model’s performance [37]. Therefore, our unknown relationship
regression is fitted with an extended R? statistic. The range of the R? statistic is between
[0,1]; the higher the value of R2, the more variation the model explains, and the better the
model fits the sinter composition. In addition, the smaller RMSE and MAE, the better the
model is. We used a five-fold cross-validation method to evaluate model performance.

Hypothesis tests: We test a hypothesis to show the significance of predicted and true
sinter compositions. The null hypothesis is HO: there is no significant difference between
predicted sinter compositions and original sinter compositions (they come from the same
distribution). We perform two-sample t-tests to calculate the p-values. Since each prediction
will have a p-value, we compute the mean p-value of the whole dataset.

5. Experimental Setups

We evaluated our model on a sintering dataset and provided a detailed comparison
with six regression methods. This section also provides a detailed description of the dataset
and its evaluation settings.
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5.1. Datasets Description
5.1.1. Sinter Datasets

One of the most important aspects of any machine learning method is having input
and output data from reliable sources. Usually, there is a seasonal variation in the input
parameters, such as the percentage fluctuation of MaO in iron ore, which is usually lower
during the rainy season. To predict the sinter composition ratio, the chemical indexes from
the database of a sintering plant in China were collected. The time of data spans from
January 2017 to December 2018. The data of the whole production line can be classified into
mainly two categories: chemical index and physical index, as mentioned in Section 3.2. For
the sinter data, 12 manual samplings and analyses are performed daily. Daily data from a
period of two years were used in our data-driven modeling. The period yielded a set of
7803 valid observations of the model. The statistics of sintering compositions can be seen
in Table 1. Finally, our model was also developed to correlate nine sinter compositions as
the output variable and the sinter production, described as input variables.

5.1.2. More Validation Datasets

We also used three external datasets (Pentagon, Corpus Callosum, and Mandible
shape; the details of these datasets can be found in [35]) to validate our model. We further
compared our model with a geodesic regression and ShapeNet models [35].

5.2. Implementation Details

We compared the results of regressive methods with the mentioned datasets via
MATLARB software and Python using an Intel(R) Core(TM) i5-10500 CPU. We used 6242
(70% of dataset) as the training set and the rest 1561 (30% data) as the test set. We compared
the predicted results of our SCORN with the other six baseline methods (DecisionTree [38],
RForest [39], KNN [40], LS [41], MLP [42], SVR [43]). Our SCORN model'’s structure finally
has ten layers. The number of composition indexes of the sintering process D is nine. We
chose sgdm as our optimization function. The maximum number of iterations was set as
300, and the initial learning rate was set as 0.0005. The running time of training our model
is 350 s, and the inference time is less than 0.1 s. To train the DecisionTree model, we used
the default parameters from Python’s Scikit-Learn module. For SVR, the algorithm does
not support multiple outputs for regression problems, and we implemented multi-objective
support vector regression via a correlation regression chain [44,45]. We used the RBF (radial
basis function kernel) kernel, and other parameters were set as default values. For the MLP
model, the training was started with a simple 20-50-100 structure hidden layer, and we
chose tanh as our activation function. The maximum number of iterations was set as 100,
and the penalty function was set as 0.0001. Different regressive methods were developed.
Each method was started based on the same datasets.

5.3. Results

In this section, we provide a detailed comparison with six conventional methods. The
significant analyses demonstrated the applicability and goodness of our model.

5.3.1. The Traditional Methods Used for Comparison

This part summarizes other used regression models that are compared with our
SCORN model. Many machine learning algorithms are designed to predict a single numer-
ical value, referred to as a single output regression model. However, we can also encounter
many multi-output regression problems in real life. Multi-output regression aims to learn a
mapping between a single or multivariate input space and a multivariate output space [41].

1.  Least Square. Least squares is a mathematical optimization technique that finds the
best functional match for the data by minimizing the sum of squared errors.

2. KNN. The nearest-neighbor technique is a well-known and studied technique in sta-
tistical learning theory [40]. In essence, the method consists of constructing estimators
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by averaging the properties of training events of similar characteristics to those of a
test event to be classified or whose properties need to be inferred.

3.  RondomForest. A random forest algorithm is an ensemble approach that relies on
CART models [39].

4. Decision Tree. In a decision tree model, an empirical tree represents a segmentation of
data, which is created by applying a series of simple rules. These models generate a set
of rules that can be used for prediction through the repetitive process of splitting [38].

5. Multilayer Perceptron. MLPs learn a mapping function from the input space to the
target space [42]. Generally, there are three basic layers in the structure of MLPs, the
input layer, the number of hidden layers, and the output layers. The three-layer MLP
consists of one input node, three hidden layers with [20, 50, 100] hidden nodes, and
nine output nodes in each joint.

6.  SVR. Support vector regression (SVR) works on the principle of structural risk mini-
mization (SRM) from statistical learning theory. The core idea of the SRM theory is
to arrive at a hypothesis h, which can yield the lowest true error for the unseen and
random sample testing data [43].

5.3.2. Composition Predictions

After training the SCORN model with the sinter plant training set, we applied the
model to predict the sinter composition of the test set. The training curve and validation
curve of the trained network structure is shown in Figure 3. The comparison results of
actual and predicted compositions are shown in Table 2. We enumerated the predicted
values of six groups of samples and their corresponding true values. Compared with the
actual composition with the SCORN predicted composition, the predicted value is close
to the actual component, which indicates that the SCORN model has a good prediction
effect. Figure 4 shows the detailed comparison between the prediction and the original
value of sinter composition Tfe based on the SCORN model. Most of the predicted values
are close to the original values. Both the predicted value and the original value fluctu-
ate within the same numerical range, which shows that the SCORN model has a high
generalization ability.

Table 2. Comparison of the actual composition and the predicted composition using our SCORN
model (# means the actual number, and P# represents the predicted number).

Compositions #1 P#1 #2 P#2 #3 P#3 #4 P#4 #5 P#5 #6 P#6

TFe % 56.98 56.86 57.22 56.94 57.08 56.94 5690 56.95 56.91 56.85 56.82 56.85
Feo % 77 87 89 865 9 865 84 865 840 870 890 8.69
5i0; % 552 546 539 546 547 547 538 547 539 546 554 546
CaO % 11.03 11.11 10.85 11.01 11.05 11.01 10.85 11.01 11.22 11.11 11.52 11.10

Ro 2 204 201 202 202 202 202 202 208 204 208 203
MgO % 155 127 152 120 149 120 15 120 161 127 153 1.26
S % 086 112 08 113 088 113 089 113 086 112 086 1.12

AlO3 % 0.032 0.022 0.024 0.021 0.026 0.021 0.027 0.021 0.028 0.022 0.028 0.023
Total iron ore 98.87 98.31 98.73 98.27 98.77 98.27 98.30 98.27 98.81 98.30 98.99 98.29

5.3.3. Significance Analysis

After predicting the sinter composition of the test set, we calculated the statistical
significance of SCORN and each comparison method that is described in Section 5.3.1.
Table 3 shows the values of R?, RMSE and MAE, as given in Equations (3)—(5), of the
training set using the five-fold cross-validation method. The R? score of different methods
is close to 1, which shows that the fitting degree of the model is good. We also reported the
uncertainty of all models. Except for the SVR model, the RMSE and MAE of the SCORN
and other compared models are generally low. In addition, the R? score and RMSE of the
SCORN model are better than those of other models. MAE of the SCORN model is also
close to the best value. The higher R-value of the SCORN model shows that the prediction
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performance of the SCORN model is better than the other traditional models. This result
shows that our model can be practically applied in situations where a large amount of data
is available. Similarly, RMSE, the standard deviation of residuals, is smaller than that of
other regressive models. It shows that residuals are dispersed in a narrower range in the
case of the SCORN model compared to the other regressive models. In the present CNN
training, a fixed value of the learning rate, 0.0005, was selected. The R-value may be further
increased if the dynamic learning rate is used [46].

The mean p-value of the whole dataset is 0.995. All results are from two-sample
t-tests and cannot reject the null hypothesis, which implies that the predicting sintering
compositions are similar to the true sintering compositions in which the predicted values
almost recover the original values. Table 4 compares the R? statistic of SCORN with
geodesic regression and ShapeNet models. The R? values of three datasets from our
SCORN are much larger than those of other models. The lower values indicate that shape
variability is not well modeled by the geodesic regression model. Therefore, our SCORN
model shows higher effectiveness in predicting the shapes of three different validation
datasets given a single input.

Table 3. Comparison of the SCORN models and the different methods (the variances of R? values are
negligible because of their small values).

Method SVR KNN R Forest Decision Tree OLS MLP SCORN

RMSE  3.06 £0.33 0.50+0.02 046 £0.01 046 +0.01 048 +0.01 049 +0.01 0.40 +£0.01
MAE 118 £0.08 0.33+0.01 0.31 £0.01 0.31=+£0.01 033£0.01 0.34+0.01 0.33 +£0.01
R? 0.9865 0.9998 0.9998 0.9998 0.9997 0.9997 0.9999

Table 4. R? statistic of predicting data.

Datasets Pentagon Corpus Callosum Mandible

Geodesoc regress 0.0223 0.0234 0.0873

ShapeNet 0.3911 0.3854 0.1738

SCORN 0.9923 0.9996 0.8191
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Figure 3. Training and validation curve.
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Figure 4. Comparison of the actual Tfe component and the predicted Tfe component with our SCORN
model. The max error is 4-1.4835.

5.4. Parameter Analysis

The ablation study of different dropout rates is shown in Table 5. Different dropout
rates affect the performance of our SCORN model because different rates can correct errors
in other units to help avoid the overfitting problem. Combining Tables 5 and 6, we can find
that when the dropout rate is 0.7 and the learning rate is 0.0005, the SCORN model has the
best overall performance and high prediction accuracy.

Table 5. Ablation study of different dropout rates.

Evaluation drop =0.5 drop =0.6 drop =0.7 drop =0.8
Traning Loss 1.5056 1.0434 1.0056 1.0397
Traning RMSE 1.7353 1.4446 1.4182 1.4420

Table 6. Ablation study of different learning rates.

Evaluation 0.0001 0.0005 0.001
Traning Loss 1.0056 0.9723 1345
Traning RMSE 1.4182 1.3945 51.86

6. Discussion

In this paper, we exploit the excellent representation learning capability of the deep
networks to optimize sinter compositions from the sinter production. We propose a sinter
composition optimization model based on an RCNN. From these experiments, we find
that the proposed approach can predict the sinter composition changes with a higher R?
value. One reason is that the network architectures provide enough modeling capacity
to encode the sinter chemical composition at each production and generalize it to unseen
production. Finally, we note that the model can be easily extended to support more than
a single input; natural extensions would include other influential factors such as product
class and other indicators. The essential benefit of our proposed model over traditional
methods is that our model has better prediction accuracy, which can effectively save the
cost of the sintering process.



Solids 2022, 3

427

6.1. Applications and Extensions

The technical staff can quickly obtain the optimal raw material ratio using our pre-
dicted sintering output. Then the ore mixing structure can be optimized, and the cost can
be effectively reduced. In addition, with a more accurate raw material composition, it
is beneficial to improve the planning of sintering material scheduling in the sinter plant.
Procurement personnel can optimize the plan and cost of iron ore raw materials through
a more reasonable economic value assessment of various raw materials. Based on op-
timization results of sinter composition, it can be further extended to the blast furnace
proportioning model. By adding pellets, lump ore, and other related raw materials, a blast
furnace batching optimization model can be applied to calculate the optimal raw material
ratio of molten iron.

6.2. Advantages and Limitations

There are several advantages of our proposed SCORN model. Firstly, our model
is only data-driven and can extract key features efficiently and accurately with only a
small amount of key input data. Therefore, our model is very convenient for adding new
sintering ratio factors. Secondly, the SCORN model can be applied to the sintering process
of other types of ores. The sintering composition optimization model can be established
without conducting real experiments using raw materials, which saves time and costs.
Lastly, the predicted optimized sintering composition of our model meets the premise
quality requirements.

One limitation of our work is that not all indicators of sintering granulation character-
istics are considered, such as middle size proportion (MSP), average size index (ASI), etc.
As for future work, aside from collecting more data, combining our model with pelletizing
metrics may improve sinter quality and steel quality. In addition, another disadvantage of
our model is that it is not sensitive enough to small changes in sinter production from one
time-unit to the next.

7. Conclusions

In this paper, we are the first to propose a sinter composition optimization model
based on a regressive convolutional neural network. The proposed SCORN model can
handle small amounts of data and high-dimensional data. The prediction accuracy of
the model is further improved by optimizing the parameters and structure of the RCNN
model. Experimental results show that our method performs better than several regressive
models. Therefore, our SCORN model is more suitable for predicting the composition of
the sintering process in metallurgical enterprises. In the future, we will pay more attention
to other physical indexes, the metallurgical properties indexes, and the correlation between
the data from the sinter production line. We aim to mine the important parameters that
affect the fluctuation of sinter components and build a better model by combining the
physical indexes and metallurgical properties indexes.
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