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Abstract. Principal geodesic analysis (PGA) has been proposed for
data dimensionality reduction on manifolds. However, a single PGA
model is limited to data with a single modality. In this paper, we are
the first to propose a generalized K-means-PGA model on manifolds.
This model can analyze multi-mode nonlinear data, which applies to
more manifolds (Sphere, Kendall’s shape and Grassmannian). To show
the applicability of our model, we apply our model to spherical, Kendall’s
shape and Grassmannian manifolds. Our K-means-PGA model offers cor-
rect geometry geodesic recovery than K-means-PCA model. We also show
shape variations from different clusters of human corpus callosum and
mandible data. To demonstrate the efficiency of our model, we perform
face recognition using ORL dataset. Our model has a higher accuracy
(99.5%) than K-means-PCA model (95%) in Euclidean space.
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1 Introduction

Principal component analysis (PCA) has been widely used in analyzing high-
dimensional data. It also has other applications. For example, object recognition
has attracted more attention in the field of pattern recognition and artificial
intelligence. Many literature addressed this issue that included steps of object
prepossessing, feature extraction and recognition [1-3]. The first appearance-
based method applied the PCA model to recognize images [1]. Some techniques
added additionally incorporate facial shape, which included morphable model
and active appearance model [2,3]. Other models considered all images as a
Lambertian object, and recognized images from orthonormal basis [4,5]. A sta-
tistical model was proposed to show variations of normal surface direction, which
used PCA to transfer surfaces norm to the tangent space [6,7]. However, PCA
has difficulties in analyzing nonlinear data. Nowadays, the convolutional neural
network has been widely used in object recognition. However, it always needs a
sufficient number of training data to get a good classifier [8,9]. Principal geodesic
analysis (PGA) has been proposed to analyze the nonlinear data on Riemannian
manifolds [10], and it also can be used to analyze facial shape variations [11-
13]. However, previous work did not provide a general model for all manifolds,
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which is only applicable to spherical manifold. PGA model also cannot deal with
multi-cluster data, but there are always different modes of data.

In this paper, we aim to explore whether K-means-PGA model is applicable
to general manifolds for shape analysis and whether our model can achieve a
higher accuracy than K-means-PCA model for face recognition. Our contribu-
tions are in two-fold:

(1). A general K-means-PGA model for more manifolds.
(2). The detailed calculations of K-means-PGA model follow the geometry of
data. Also, it has a higher accuracy than the cases in Euclidean space.

We first define a more general statistical model, which is applicable to more
manifolds. We then draw the concept of K-means-PCA in Euclidean space and
define a general objective function of K-means-PGA model on manifolds. We
also introduce the detailed computations of the exponential map and logarithmic
map on three manifolds. To show the applicability of our model, we apply our
model to the spherical and Kendall’s shape manifolds. Our K-means-PGA model
offers correct geometry geodesic recovery than K-means-PCA since K-means-
PGA allows the model to capture the specific geometry of data. In addition,
we show shape variations from different clusters of human corpus callosum and
mandible data. To demonstrate the efficiency of our model, we perform the face
recognition using ORL data set. We further explore whether the dimensionality
reduction can affect the recognition rate of our model. We compare our method
with K-means-PCA model, empirical results show that the recognition rate can
achieve 99.5% with a reduced dimensionality as low as 67 (vs. original 360).

2 K-means Principal Component Analysis

In this section, we briefly review the K-means principal component analysis
model in the Euclidean space.

2.1 K-means on Euclidean Space

The purpose of the K-means algorithm is to partition the given data points
into a predefined amount of k clusters. K-means algorithm aims to optimize the
objective function of Eq. 1. The algorithm is described in Algorithm 1, it starts
with a random set of k center-points p. In the update step, all data x are
assigned to their nearest center-point in Eq. 2. If multiple centers have the same
distance to the data, we will randomly choose one.
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n=1k=1 0 otherwise

where x is the observed data, uy is the k centers. K is the number of clusters,
and Sy is one cluster data.
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We then recalculate the mean of assigned observations to original center-
points i, where |Sg| is the number of cluster Sj.

Algorithm 1. K-means on Euclidean space

Input: z),---,zx € X¥,, and the number of clusters k
Output: k clusters data XX
1: Randomly choose k centroids from data set X
2: Compute distances from each data to each centroid, and assign each data to its
closest centroid
3: Replace each centroid by the mean of partitioned data in step 2
4: Repeat step 2 and 3 until all k centroids are chosen

2.2 K-means-PCA Algorithm

After calculating k clusters data from Algorithm 1, we then obtain the K-means-
PCA algorithm as following;:

Algorithm 2. K-means-PCA

Input: k clusteres data X& from Alg. 1
Output: Eigenvectors ver and eigenvalues A\, of each cluster
1: For k = 1 to K

2: = J\r,C Zz 1 Tik
. _ Ny T
3 5 o iy (i — ) (wak — )
4:  wey, \p = eigenvectors/eigenvalues of S // using singular value decomposition
5: end

3 K-means Principal Geodesic Analysis

3.1 Riemannian Geometry

In this section, we first review three basic concepts (geodesic, exponential
and logarithmic map) of Riemannian geometry (more details are provided by
others [14-16]).

Geodesic. Let (M,g) be a Riemannian manifold, where ¢g is a Riemannian
metric on the manifold M. A curve «(t) : [0,1] — M and let v/(t) = dv/dt be
its velocity. The operation D - /dt is called a covariant derivative (also called a

connection on M), which is denoted as V.. ;) or V.,s. A vector field V'(¢) along y
DV(t)

is parallel if = V.,V =0. We call v a geodesic if 7/(t) is parallel along 7,

that is: 7" “’ = V., =0, which means the acceleration vector (directional
derlvatlve) ~ 1s normal to T’ M (the tangent space of M at (¢)). A geodesic

is also a curve v € M that locally minimizes F(~y fo [[v/(t)||?dt. Here || - || is
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called Riemannian norm, for any points p € M, and v € T,M, ||v|| is defined
by: ||v]| = \/9p(v,v). gp(u,v) is called Riemannian inner product of two tangent
vectors u,v € T, M, which can also be denoted by (u,v), or simply (u,v). The
norm of velocity in a geodesic «y is constant, that is: ||7/(¢)|| = ¢ [15]. Note that
geodesics are straight lines in Euclidean space (R™).

Exponential Map. For any point p € M and its tangent vector v, let D(p) be
the open subset of T,M defined by: D(p) = {v € T,M|vy(1) is defined, where
~ is the unique geodesic with initial conditions y(0) = p and 7/(0) = v. The
ezponential map is the map Exp, : D(p) — M defined by: Exp,(vt=1) = (1),
which means the exponential map returns the points at v(1) when ¢t = 1. If
w € D(p), then the line segment {tw|0 < ¢ < 1} is constrained to be in D(p). We
then define: Exp,,(vt) = v(t), where 0 <t < 1.

Logarithmic Map. Given two points p and p’ € M, the logarithmic map takes
the point pair (p,p’) and maps them into the tangent space T,M, and it is
an inverse of the exponentlal map: Log(p,p’) — T,M. Log(p, p) can also be
denoted as: Log,, p’. Because Log is an inverse of the exponentlal map, we can also
write: p’ = Exp(p, Log(p,p’)). The Riemannian distance is defined as d(p,p’) =
[|Log, (p')||- In Euclidean space (R"), the logarithmic map is the subtraction
operation: Log,(p") = p’ — p [17].

3.2 K-means on Manifold

We define a general objective function J for K-means algorithm on manifolds.

J:ZZHLO&C” i)l = szxmﬂfk 3)

n=1k=1 n=1k=1

Alternatively, we aim to minimize the following energy function:

N K
E = arg min; Z Zd(mn,uk)27 (4)
n=1k=1
where py is the intrinsic mean, which is calculated in Algorithm 4, |Sk| is the
number of cluster Si. By using Algorithm 3, we obtain the k clusters data on
manifolds.

3.3 Principal Geodesic Analysis (PGA)

Similar to the PCA model, PGA was proposed by Fletcher (2004), it aims to
reduce the dimensionality of nonlinear data [10]. Differ from the Algorithm 2,
we need to calculate the intrinsic mean of data. We then perform the PGA in
Algorithm 4.



582 Y. Zhang et al.

Algorithm 3. K-means on manifold

Input: z1, - ,zn € XY, number of clusters k
Output: k clusters data XX
1: Randomly choose k centroids from data set X.
2: Compute the Riemannian distances (using Log map) from each data to each
centroid, and assign each data to its closest centroid
3: Replace each centroid by the intrinsic mean of partitioned data points in step 2
4: Repeat step 2 and 3 until all k£ centroids are chosen

Algorithm 4. Principal Geodesic Analysis

Input: z1,--- ,an €M

Output: Eigenvectors ve and eigenvalues A of input data
1: Mo = T1

2: Do

Alu’ = % Zfil Logujxi

i1 =Exp, (Ap)

: While ||Ap|| > € // calculate intrinsic mean of {x;}
z; = Log,, (i)

§=x Tl zia’l

1 veg, A = eigenvectors/eigenvalues of S
)

N g w

3.4 K-means-PGA Algorithm

After calculating the data of each cluster from Algorithm 3, and we can combine
it with Algorithm 4 to obtain the K-means-PGA algorithm as following;:

Algorithm 5. K-means-PGA

Input: % clusters data X/ from Alg. 4
Output: Eigenvectors vey and eigenvalues A\, of each cluster
1: For k=1to K
(k= intrinsic mean of {z;x}
), = Log,, (k)
S = % Zf\f:1 $2kx/zj;s
ver, \i, = eigenvectors/eigenvalues of S
end

3.5 Computation of Exp and Log Map Manifolds

Sphere Manifold. One of the well-known spherical manifolds is the 3D sphere
(2D surface embedding in 3D space). Let r be the radius of the sphere, u the
azimuth angle and v the zenith angle. Then any points on 3D sphere can be
expressed by: X = (rsin(u)sin (v),r cos (u)sin (v),rcos (v)). The generalized
n—1 dimensional hyper-sphere embedded in R™ Euclidean space (21,22, ,Zy)
has the constraint of: Zle 2? = 1?2, here r is the radius of such a hyper-sphere,
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we set 7 = 1. Let p and p’ be such points on on a sphere embedded in R", and
let v be a tangent vector at p.

The Log map between two points p, p’ on the sphere can be computed as
follows:

>

) = ﬁ, 6 = arccos((p,p)), )
L= ~-p (1))
where p - (p,p’) denotes the projection of the vector p’ onto p. ||L|| is the Rie-
mannian norm as defined in Sect. 3.1.
Given base point p, and its estimated tangent vector v from Eq.5 and ¢, we
can compute the Exp map as:
sin ¢
0
This explanation is based on that of Wilson and Hancock (2010); see them
for details of Log map and Exp map on the Sphere manifold.

Exp(p,vt) = cosf - p+ -vt, 0= ||vt]]. (6)

Kendall’s Shape Manifold. A more complex manifold was studied by David
G. Kendall [18]. Kendall’s shape can provide a geometric setting for analyzing
arbitrary sets of landmarks. The landmark points in Kendall’s space are a col-
lection of points in Euclidean space. Before calculating the Log and Exp maps,
we use some transformations (scale and rotation) to get the pre-shape of data.
Given two shapes p,p’ € V with d x n matrix (d is the dimension of the
shape, n is the number of points), to construct Kendall’s shape space, first, we
remove the translation and scale of the shape. To get the pre-shape of an object,
we eliminate the centroid (subtract the row means from each row) and scale it
into unit norm (divide by the Frobenius norm). Then, we remove the rotation
of the shape using Orthogonal Procrustes Analysis (OPA) [19]. OPA solves the
problem of finding the rotation R* that minimizes distance between p and p’.

R* = arg mingeso(q) || Rp — P/l

where SO means a special orthogonal group. OPA performs singular value
decomposition of p - p'T; let [U, S, V] = SVD(p - p'T), then the Rx = UVT.

The Log map between two shapes p,p’ of Kendall’s shape manifold is also
given by finding the rotation between p and p’ first. To find the rotation of p’,
we calculate the singular value decomposition of p-p”; then we find the rotation

/

of p’ according to P{Rory = rotation - p’. Then the Log map is given by:
6-L
v = Log(p,p') = mv 0= arCCOS(<p’p/(Rot)>),
L= (Xr(rot) = P (Ds P Rot) )
/

where <p7p(Rot)> denotes the projection of the vector p’ onto p.

(7)

The Exp on Kendall’s shape is the same as sphere manifold (Eq. 6). Refer to
Kendall (1984) to see the details of Log map and Exp map Kendall’s manifold.
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Grassmannian Manifold: Before we introduce the Exp and Log map of Grass-
mannian manifold, we should get the subspace of the data, since Grassmannian
manifold Gy 4 is defined as d—dimension subspace. Therefore, it is necessary to
use Principal Geodesic Analysis to get the subspace (submanifold) of Grassman-
nian manifold. Algorithm 4 describes how to calculate the intrinsic mean and
PGA reduction of Grassmannian manifold. Please refer to [10] for more details.
Suppose that we get the subspace from PGA of the data (that is p and p’), again
to get the sampling from p to p’, we need to calculate the Log map and Exp
map. Differ from [20], and we use the following calculations:
Then the Log map is given by:

X = (I_p'pT)'p/'(pT'p/)_lv [U,S,V] :SVD(X)a

8
v="Log(p,p) =U-0-VT, 6 =arctans, ®)
where [ is the identify matrix, and 6 is the principal angles between p and p’.
The exponential map is computed by base point p, and the estimated initial
velocity v, that is,

[U,6t,V] =SVD(vt), Exp(p,vt) =p-V -cos(ft)+ U -sin(0t)- VT, — (9)

Refer to [21] and [22] to see the details of geometry on Grassmannian manifold.®

4 Experiments

In this section, we demonstrate the effectiveness of our K-means-PGA model by
using both synthetic data and real data.

4.1 Sphere

To validate our model in sphere manifold, we randomly simulate 764 data points
on a unit sphere S? with three clusters. We can visualize the true geodesic from
the Fig. 1. The blue line is the estimated geodesic of K-means-PGA model, while
the yellow line is true geodesic. We can find that estimated geodesics are almost
overlaying with true geodesic, which demonstrates the correctness of our model.
We also compare the estimated results of our model with K-means-PCA in the
Euclidean space. As shown in Fig. 1c, estimated geodesics of K-means-PGA are
curves on the sphere, but the estimated geodesic of K-means-PCA is straight
lines, which cannot recover true geodesics on the sphere. Figure 1b illustrates
the limitation of PGA model since it cannot estimate geodesics of multimode
data since only one geodesic can be estimated. This result also illustrates the
advantage of K-means-PGA model than the traditional PGA model.

! Source code is available at: https://github.com/heaventian93/Kmeans-Principal-
Geodesic- Analysis.
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(a) K-means-PGA (b) PGA (¢) K-means-PCA

Fig. 1. (a) The estimated geodesic using K-means-PGA. The blue line is the estimated
geodesic, and the yellow line is the ground truth. (b) The estimated geodesic (magenta
color) of PGA model, which is the limitation of PGA model since it only shows one
curve. (c) The comparison of estimated geodesics of K-means-PGA and K-means-PCA.
The blue line is the estimated geodesic in (a). Cyan lines are estimated geodesics using
K-means-PCA, which are straight lines.

(a) Cluster one (b) Cluster two

Fig. 2. The shape variations of two clusters corpus callosum using K-means-PGA along

the first geodesic with [—v/A, VA

4.2 Kendall’s Shape

Corpus Callosum Data. To show K-means-PGA model for demonstrating
classification for the real shape changes, we apply it to corpus callosum data.
The corpus callosum data are derived from MRI scans of human brains. The data
is from the ABIDE database,? which is used in Hiess et al., (2015). The valid data
contains 1100 patients; we extract the boundary of each corpus callosum shape,
and each shape contained 2 x 142 points. As shown in Fig. 2, it demonstrates
corpus callosum shape variations of two different clusters, which are generated
from the points along the estimated principal geodesics: Exp(u, a;ve;), where
o; = [—\/X, \/X], for i = 1, which means the largest the eigenvalue. It shows that
the anterior, mid-caudate and posterior of corpus callosum from the unhealthy
group (Fig.2a) is significantly larger than the healthy group (Fig.2b).

Mandible Shape. The mandible data is extracted from a collection of CT scans
of human mandibles. It contains 77 subjects and the age is from 0 to 19 years.

2 https://sites.google.com/site/hpardoe/cc_abide.
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We sample 2 x 400 points on the boundaries. Figure 3b shows examples of 3D
raw data of mandible and 2D shape data. Shape variations of mandible data
from male (Fig.4a) and female group (Fig.4b) are shown in Fig.4. In general,
male mandibles have larger shape variations in the temporal crest, middle part
and the base than that in female mandibles, which is consistent with previous
studies [23].

0 200 400 0 200 400 0 200 400

(a) 3D mandible shapes (b) 2D mandible shapes

Fig. 3. Example of 3D and 2D mandible shapes.

- 0 A

(a) Cluster one (b) Cluster two

Fig. 4. The shape variations of two clusters mandible data using K-means-PGA along
the first geodesic with [—v/A, vV/A].

4.3 Grassmannian Manifold

We use the ORL face database for examining face recognition task. This dataset
is composed of 400 images with the size of 112 x 92. There are 40 persons and
ten images for each person [24]. For the experiments, we use the ten-folds-cross-
validation, we chose 90% of images of each category as training data and the
rest as test data. As shown in Fig. 5, we observe eight eigenface examples which
are chosen from the first component of the K-means-PGA model. From Fig. 6,
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the face recognition percentage of K-means-PGA model (99.5%) is significantly
higher than K-means-PCA model (95%), which illustrates the superiority of our
model. The K-means-PGA model reduces the dimensionality of input images
and only 67 dimensionalities out of 360 can extract enough number of features
for face recognition.

Fig. 5. The first eigenvector of each cluster, which shows the most important feature
of each category.
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Fig. 6. The comparison of face recognition percentage of K-means-PGA and K-means-
PCA with different number of dimensionalities.

5 Discussion

The experiments for sphere and Kendall’s shape demonstrate that K-means-
PGA model is suitable for shape analysis, especially for nonlinear data. Also,
our model achieves a higher facial recognition accuracy than K-means-PCA
model since the K-means-PGA model can capture the intrinsic geometry of data.
To choose a proper manifold for different datasets, we suggest that sphere man-
ifold is suitable for data, which lies on hypersphere; Kendall’s manifold is the



588 Y. Zhang et al.

best choice if data are 2D landmark shapes, and Grassmannian manifold will
have a good performance if data should be prepossessed in the subspace.

However, there are two major limitations of our model. First, the computa-
tion time is O(i X k x n X d), i is the number of iteration, k is the number of
clusters, n is the number of samples, and d is the dimensionality of each sample
feature. If i X k x m x d is bigger, our model will consume longer computation
time. Secondly, the number of cluster k cannot be automatically determined. In
our experiment, we determine the number of clusters k£ using the minimal error,
which defined in Eq. 4.

6 Conclusion

In this paper, we first define a general model for K-means-PGA model on dif-
ferent Riemannian manifolds, and we give closed-form expressions of Log map
and Exp map on three manifolds. We conduct four experiments on three mani-
folds, and experimental results show that K-means-PGA model is able to analyze
shape variations in multimodal data, and the accuracy of K-means-PGA model
is relatively higher than the model in Euclidean space. For future work, we will
apply our model in more manifolds, and analyze detailed changes of data (e.g.,
gesture recognition in images).
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