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Abstract. In this paper, we analyze the diffeomorphic image variability
using a Bayesian method to estimate the low-dimensional feature space
in a series of images. We first develop a fast sequential diffeomorphic
image registration for atlas building (FSDAB) to reduce the computation
time. To analyze image variability, we propose a fast Bayesian version
of the principal geodesic analysis (PGA) model that avoids the trivial
expectation maximization (EM) framework. The sparsity BPGA model
can automatically select the relevant dimensions by driving unnecessary
principal geodesics to zero. To show the applicability of our model, we
use 2D synthetic data and the 3D MRIs. Our results indicate that the
automatically selected dimensions from our model can reconstruct unob-
served testing images with lower error, and our model can show the shape
deformations that corresponds to an increase of time.

Keywords: Bayesian estimation · Principal geodesic analysis ·
Diffeomorphic image registration · Dimensionality reduction

1 Introduction

Medical image registration is an essential branch in computer vision and image
processing, and it plays a vital role in medical research, disease diagnosis, surgical
navigation, and other medical treatment [1–3]. For effective information integra-
tion: the fusion of information from various images or different time series images
from the same patient is relatively remarkable. It can primarily improve the
level of clinical diagnosis, treatment, disease monitoring, surgery, and therapeu-
tic effect evaluation, for example, the fusion of anatomical images and functional
images. It can provide an accurate description of anatomical location for abnor-
mal physiological regions. Also, the fusion of images from different modalities
can be applied to radiation therapy, surgical navigation, and tumor growth mon-
itoring [4]. Therefore, image registration for atlas building (template) is essential
in the medical field.

There are many works addressed image registration problem. Elsen et al.
summarized some medical image registration technologies and realized the align-
ment of different images [5]. Other methods include mutual information for
multi-modalities image registration [6], Fourier transform [7]. Image registration
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will consume more substantial computation time, especially for 3D image reg-
istration. Plishker et al. discussed the acceleration techniques of medical image
registration [8]. Nevertheless, one crucial criterion in medical image registra-
tion is anatomical structures are one-to-one corresponded with each other after
image registration, while transformation has to be topology-preserving (diffeo-
morphic). If a geometric shape is significantly different in two or more images,
a topology-preserving transformation is hard to generate. To solved this prob-
lem, several geodesic registration methods on manifold have been proposed, eg.,
Large Deformation Diffeomorphic Metric Mapping (LDDMM) [9,10]. LDDMM
provides a mathematically robust solution to the large-deformation registration
problems, by finding geodesic paths of transformations on the manifold of diffeo-
morphisms. The advantage is that it can solve the large deformation registration
problem, but the transformation is computationally very costly to compute if
shape change is relatively large. Zhang et al. proposed a fast geodesic shooting
algorithm for atlas building based on the metric of original LDDMM for diffeo-
morphic image registration, which was faster and used less memory intensive
than original LDDMM method [11].

However, the original LDDMM algorithm was time-consuming and stuck into
local minimum if there is a significant difference between the two deformation
images. To overcome these issues, we first propose a fast sequential diffeomorphic
image registration for atlas building (FSDAB) to reduce the computation time.
To analyze image variability, we propose a fast Bayesian version of the principal
geodesic analysis (PGA) model that avoids the trivial expectation maximization
(EM) framework. To show the validation of our model, we use 2D synthetic
data and the 3D MRIs. Our model can reconstruct ground truth image with
lower selected dimensions, and our model can show the image variability with
the increasing of time.

2 Background

In this section, we briefly review the mathematical background for diffeomorphic
atlas building.

2.1 Differomorphism in Image Registration

Given a source image I0 (aka. template image and fixed image), and a target
image I1 (aka. moving image). The aim of image registration is to find a trans-
formation φ : Ω −→ Ω, where Ω ∈ R

n, is the domain on the data (n = 2 for
2D images and n = 3 for 3D images), so that I1 = φI0 = I0 ◦ φ−1. The trans-
formation should not only guarantee the corresponding spatial locations and
anatomical positions are the same within two images; but also preserve topology
(diffeomorphism) of large deformation of images. A diffeomorphic transforma-
tion φ is a globally one-to-one continuous and smooth mapping and it also has a
continuous and smooth inverse transformation. Specifically, the inverse of trans-
formation (φ−1) exists and both φ and φ−1 are invertible. The diffeomorphism
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could form a group of Diff using the composition operation, i.e. φ1 ◦ φ2 ∈ Diff if
φ1, φ2 ∈ Diff:

Diff = {φ : Ω → Ω|φ and φ−1 are differentiable}. (1)

By using composition operation, we can recursively form φk as a polygonal
line in Diff (φk+1 = φk ◦ ψk, where φ0 = Id and ψ ∈ Diff). We then denote
this polygonal line as a curve: φ(x, t), 0 ≤ t ≤ 1, where t is the time variable
and φ(x, t) is the transformation of x at t. For small deformation, we use a small
displacement field u to model the transformation that: φ = x+u. In contrast, for
a large deformation, we introduce an extra time variable t to encode the warping
transformation path φ(x, t) between source and target image. When φ(x, t) is
differentiable at t, we have Eq. 2 that generates a diffeomorphism:

d

dt
φt(x) = vt ◦ φt(x), (2)

where v satisfies continuity conditions to guarantee the existence of the solution.
Therefore, optimizing the diffeomorphism transform φ is equivalent to optimizing
the time-varying velocity field vt.

2.2 LDDMM

Large Deformation Diffeomorphic Metric Mapping (LDDMM) model is one stan-
dard registration method for measuring large deformations between a source
(I0) and the target image (I1) [9]. It aims to minimized energy function in Eq. 3.
This energy function has two terms: regularity term (measures the smoothness of
transformation); similarity term (measures the similarity of the estimated image
and the target image).

E(v) =
∫ 1

0

‖vt‖2Ldt +
1
σ2

‖I0 ◦ φ−1
1 − I1‖2, (3)

where v is time-varying velocity, L is a differential operator that controls the
spatial regularity of these deformation fields, and it defined as L = −α∇2 +
γIn×n, where ∇2 is the Laplacian operator and In×n is the identify operator. σ
controls the similarity term, t is time, I0 ◦ φ−1

1 denotes warped source image I0.

2.3 Numerical Algorithm of LDDMM

In the numerical implementation, a standard steepest gradient descent is used
to minimize the energy in Eq. 3. Specifically, the time-varying velocity fields are
discretized into N time points (vti)0≤i≤N−1. For each time point i, the velocity
is updated with:

vti+1 = vti − ε(∇vti
Eti), (4)
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where ∇vt
Et is the gradient of Eq. 3 with respect v.

∇vt
Et = 2vt − K ∗

(
2
σ2

|Dφt,1|(J0
t − J1

t )D(J0
t )

)
, (5)

where K = (L†L)−1, ∗ is the convolution operation, |Dφt,1| is the determinant
of the Jacobian matrix, φs,t = φt ◦ φ−1

s , J0
t = I0 ◦ φt,0 and J1

t = I1 ◦ φt,1.
However, LDDMM needs a longer computation time and it requires large

memory to store N velocity fields. In each iteration, it needs to calculate also
N gradient fields, N compositions for φt,1 and compute N inverse problems.
Therefore, this is a very expensive algorithm. Also, the warped source image
I0 ◦ φ−1

1 might stuck on local optimal and cause a higher mismatch error ||I0 ◦
φ−1
1 − I1||. As shown in Fig. 1, the wrapped source image (c) stuck into the local

minimum and did not full recovery the full “C” shape. To overcome these issues,
we develop a fast sequential diffeomorphic image registration for atlas building.

Fig. 1. Circle registration results using LDDMM. (a): source image, (b): target image,
(c): LDDMM results, (d): difference between (b) and (c).

3 Fast Sequential Diffeomorphic Atlas Building (FSDAB)

Given input images I1, · · · , IN , the atlas building task is to find a template
image I to minimize the difference between I and input images. Differ from
minimizing sum-of-squared distances function (minI

1
N

∑N
i=1 ||I − Ii||2) in [12],

we aim to minimize following energy function:

E = arg min
I

{
N∑

i=1

(
1
2

∫ 1

0

||vi
t||2Ldt +

1
2σ2

κ∑
k=1

||Ii
k ◦ (φi

k)−1 − Ii||2
)}

, (6)

The atlas building needs to find the optimal vi
t and update the atlas. Differ from

Eq. 3, we have sequential Iκ in the similarity term, the template image Ii = Ii
κ.

This aims to solve the local minimum of the warp source image, and avoid the
situation in 1 since the I0 in Eq. 3 is never changed, but in our new FSDAB
model, the template can update in the each iteration.

Similar to LDDMM, the next step is to take the gradient of Eq. 6 with respect
to v. The key in the proof is to introduce the Gateaux variation of φs,t w.r.t v
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(Lemma 2.1 from [9]). Here, consider a small perturbation of v at time r (i.e.
hr) affects all the transform φt for t > r cumulatively. We have:

∂hφs,t = Dφs,t

∫ t

s

(Dφs,r)
−1

hr ◦ φs,rdr (7)

For the similarity term, we have (details in Féchet derivative in the proof of
Theorem 2.1 in [9]):

∂hS(v) = − 1
σ2

N∑
i=1

κ∑
k=1

∫ 1

0

〈|Dφt,1|(J0k
ti − J1

ti)D(J0k
ti ), hti〉dti (8)

= −
N∑

i=1

κ∑
k=1

∫ 1

0

K〈
(

1
σ2

|Dφt,1|(J0k
ti − J1

ti)D(J0k
ti )

)
, hti〉dti , (9)

where J0k
t = Ii

k ◦ φi
ti,0, J1

ti = Ii ◦ φti,1, D is the Jacobian matrix and ‖ · ‖ is
the determinant value of the matrix. For the regularization term, the Gateaux
variation is easy to compute:

∂hR(v) =
N∑

i=1

∫ 1

0

〈vti , hti〉V dti (10)

By collecting both regularization and similarity term, for the Gateaux variation
∂hE(v), we can represent it as: ∂hE(v) =

∑N
i=1

∫ 1

0
〈∇vti

Eti , hti〉dti and ∇vti
Eti

is defined as:

(∇vti
Eti) =

N∑
i=1

vi
t −

κ∑
k=1

K(
1
σ2

|Dφt,1|(J0
t − J1

t )D(J0
t )) (11)

where K = (L†L)−1, J0k
t = Ii

k ◦ φi
ti,0 and J1

ti = Ii ◦ φti,1.

3.1 Numerical Algorithm of FSDAB

Also, we use the steepest gradient descent to minimize the energy in Eq. 6.
Specifically, the time-varying velocity fields are discretized into N time points
(vti)0≤i≤N−1. For each time point i, the velocity is updated with:

vti = vti − ε(∇vti
Eti) (12)

where ∇vt
Et is the gradient of Eq. 6 with respect v in Eq. 11.

By getting new images Iik, we could get the close-form solution for our tem-
plate I:

I =
1
N

N∑
i=1

{Ii
k ◦ φi

κ} (13)
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To realize a fast version of sequential diffeomorphic atlas building, we calcu-
late the correlation between warp source image and target image, if the correla-
tion is not changed after certain iteration, we will go next stage.

Algorithm 1. Fast Sequential Diffeomorphic Atlas Building
Input: Source images I1, I2, · · · , IN , noise α, number of iterations: itr′, and smooth

stage kk
Output: Template image I, and warp images Ii

k ◦ φi
κ

1: Initialize transformation field φ, velocity v and template image I
2: For i = 1 to N
3: For k = 1 to κ
4: Repeat
5: Calculate φi

k according to Eq. 2
6: Calculate vti according to Eq. 12

7: Update image Ii′
k = Ii

k ◦ φi
κ

8: Until corr(Ii
k ◦ φi

κ, Ii) not change
9: end

10: end
11: Calculate template image I according to Eq. 13

4 Fast Bayesian Principal Geodesic Analysis (FBPGA)

To analyze the image variability, we develop a fast Bayesian principal geodesic
analysis model. PGA model was proposed by Fetcher et al. [13], it used to reduce
the dimensionality of data on manifolds. We first need to calculate the intrinsic
mean of data using Algorithm 2. Afterward, we could perform the PGA using
Algorithm 3.

Algorithm 2. Intrinsic Mean of Principal Geodesic Analysis
Input: Warp images: I1

k ◦ φ1
κ, I2

k ◦ φ2
κ, · · · , IN

k ◦ φN
κ ∈ M from Alg. 1

Output: μ ∈ M , the intrinsic mean
1: μ0 = I1

kφ1
κ

2: Do
Δμ = τ

N

∑N
i=1 Logμjxi

3: μj+1 = Expμj
(Δμ)

4: While ||Δμ|| > ε

To avoid the trivial EM algorithm of the Bayesian of PGA model and to auto-
matically select the principal geodesics from images, we propose a fast version
of Bayesian PGA model. Unlike [14] which defined a Gaussian prior of the slope
for their model, our FBPGA includes the parameter γ which can automatically
choose the optimal dimensionality.
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Algorithm 3. Principal Geodesic Analysis
Input: Warp images: I1

k ◦ φ1
κ, I2

k ◦ φ2
κ, · · · , IN

k ◦ φN
κ ∈ M from Alg. 1

Output: Eigenvectors vec and eigenvalues λ of input data
1: μ = intrinsic mean of {xi}
2: x′

i = Logμ(xi)

3: S = 1
N

∑N
i=1 x′

ix
′T
i

4: veck, λk = eigenvectors/eigenvalues of S

Algorithm 4. Fast Bayesian Principal Geodesic Analysis
Input: Eigenvectors v and eigenvalues λ from Alg. 3
Output: Image variability of registered image
1: γ = D

λ2

2: Choose reduced dimension d
3: Iα = μ + α

∑d
i=1 V eci

√
λi

The value of γ is estimated iteratively as d
λ2 in this model, and thus enforces

sparsity by driving the corresponding component eigenvectors to zero. More
specifically, if γ is large, eigenvectors will be effectively removed in the latent
space. This arises naturally because the larger γ is, the lower the probability of
eigenvectors will be.

Here, we only consider the Log map and Exp in the Spherical manifold. For
other manifolds (Kendall’s and Grassmannian manifolds), please refer to [15] for
the detailed calculation of Log map and Exp map.

Sphere Manifold. One of well-known spherical manifold is 3D sphere (2D
surface embedding in 3D space), let r be the radius of the sphere, u is the azimuth
angle and v is the zenith angle. Any points on 3D sphere can be expressed by:
X = (r sinu sin v, r cos u sin v, r cos v). The generalized n − 1 dimensional hyper-
sphere embedded in R

n+1 Euclidean space (X1,X2, · · · ,Xn) has the constraint
of:

∑
i x2

i = r2, here r is the radius of such a hyper-sphere, we set r = 1. Let XS

ans XT are such points on an n-dimensional sphere embedded in R
n+1, and let

v be a tangent vector at XS . Please refer to [16] to see the details of Log map
and Exp map on Sphere manifold.

The Log map between two points p, p′ on the sphere can be computed as
following.

v = Log(p, p′) =
θ · L

||L|| , θ = arccos(〈p, p′〉),

L = (p′ − p · 〈p, p′〉)
(14)

where p · 〈p, p′〉 denotes the projection of the vector p′ onto p. ||L|| is called
Riemannian norm, ||L|| =

√〈L,L〉.
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Given base point p, and its estimated tangent vector v from Eq. 14 and t, we
can compute the Exp map as:

Exp(p, vt) = cos θ · p +
sin θ

θ
· vt, θ = ||vt||. (15)

5 Results

Our BEFSDIV model can not only accurately estimate the template image from
population images; but also observe diffeomorphic image variability of the esti-
mated template. We demonstrate the effectiveness of our model using one syn-
thetic 2d data and real 3D T2 MRI brain data.

5.1 Synthetic 2D Data

In this synthetic 2D data, we want to estimate the template of the circle shapes,
and test whether our FBPGA model can automatically reduce the dimensionality
of images. We simulated a 2D synthetic dataset with 20 subjects starting from a
“standard” circle image. These images have a resolution of 50×50 (As shown in
the Fig. 2(a)). Figure 2(b) compares our estimated template circle (left one) and
ground truth circle (middle one). We cannot visualize the difference between
estimated template and ground truth from left image and middle image. But
right one in Fig. 2(b) shows the difference between them, the blue color means
there is less difference estimate template and the ground truth image, while
yellow color represents the significant difference between them.

We also can visualize the image difference variability of the template images
(Fig. 2(c)), here these image are generated by Iα − Itrue, where Iα is estimated
from Algorithm 4. Figure 2(c) demonstrates the color changes with the increase of
α, and there is an obvious difference between the color of first principal geodesic
model and the second principal geodesic model. Here, the color also represents
the range of the difference between the reconstructed images with the ground
truth image. Besides, Fig. 2(d) compares the dimensionality of BPGA and PGA
model, we can obverse that our BPGA model can automatically reduce the
dimensionality of eigenvalues. These results illustrate the ability of our BPGA
model in reducing high dimensional features.

5.2 3D Brain Dataset

To demonstrate the effectiveness of our method on the real 3D data, we apply
our BEFSDIV model to a set of 3D T2 MRIs Fig. (3(a)). It is a set of Multi-
ple Sclerosis data [17]. From Fig. 3(b) the average MRIs is blur, but our esti-
mated template image is obviously clearer than the average MRIs, and this
demonstrates that our BEFSDIV model can well represent the general informa-
tion for T2 images, and our method can be used to estimate the template of
images which will provide a reliable reference for image fusion. Also, we could
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(a) Synthetic 2D data

(b) Left: Our estimated template circle; middle: ground truth; right: the difference
between estimation and ground truth image

(c) Image difference variability with α = −3,−2,−1, 0, 1, 2, 3 of first and second
princial geodesic models

(d) Dimensionality of Bayesian PGA and PGA

Fig. 2. The results of synthetic 2D data using BEFSDIV model.
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(a) Axial slices from MRIs

(b) Average MRIs (c) Estimated template image

(d) Image variability with α = −3,−2,−1, 0, 1, 2, 3 of first and second principal
geodesic models, there are different shapes changes of first and second principal
geodesic models.

Fig. 3. The results of 3D MRIs using BEFSDIV model

observe significant shape deformation from Fig. 3(d), these images are generated
by Iα since there is observes difference these images. Besides, our BPGA model
uses less number of eigenvalues (only nine) than the PGA model, which also



BEFSDIV 697

Fig. 4. Dimensionality of Bayesian PGA and PGA model using 3D MRIs.

illustrate the model can automatically reduce the necessary features in the model
as shown in Fig. 4.

6 Discussion

One apparent strength of BEFSDIV method is that it can accurately estimate
the template with less computational time. From the results of synthetic images
(Fig. 3), we observe that our estimate template has a small matching error, and
we show the image variability which demonstrates how the shape changes. For 3D
MRIs results, we can conclude that our model can be used to analyze the shape
changes. It will be useful for predicting brain deformations with the increasing
of ages.

However, the fast stage k is determined by the correlation between the warped
source image and the target image, which changes with time. Although we get a
good estimate MRI template, our model has a limited sample size that we only
validate our model in ten MRIs.

7 Conclusion

In this paper, we propose a BEFSDIV model to analyze the diffeomorphic image
variability. We first develop a fast sequential diffeomorphic image registration for
atlas building (FSDAB) to reduce the computation time. To analyze image vari-
ability, we propose a fast Bayesian version of the principal geodesic analysis
(PGA) model that avoids the trivial expectation maximization (EM) frame-
work. We test our mode using 2D synthetic data and the 3D MRIs. Our results



698 Y. Zhang

indicate that the automatically selected dimensions from our model can recon-
struct unobserved testing images with lower error, and our model can show the
shape deformations. In the future, we expect that the matching accuracy and
efficiency of our models can be further improved by using less memory version
of our FSDAB model.
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