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Abstract
Manually labeling data for training machine learning models is time-consuming and expen-
sive. Therefore, it is often necessary to apply models built in one domain to a new domain.
However, existing approaches do not evaluate the quality of intermediate features that are
learned in the process of transferring from the source domain to the target domain, which
results in the potential for sub-optimal features. Also, transfer learning models in existing
work do not provide optimal results for a new domain. In this paper, we first propose a fast
subspace sampling demons (SSD) method to learn intermediate subspace features from two
domains and then evaluate the quality of the learned features. To show the applicability of
our model, we test our model using a synthetic dataset as well as several benchmark datasets.
Extensive experiments demonstrate significant improvements in classification accuracy
over the state of the art.
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1 Introduction

Modern society produces a huge amount of data in a variety of forms, e.g., text, image,
audio, and video. Industry and the research community have a great demand for auto-
matic classification and analysis of different forms of data [3, 9, 40]. However, it is
time-consuming and expensive to acquire enough labeled data to train machine learning
models from scratch. Therefore, it is valuable to learn a model for a new target domain from
abundant labeled samples in a different existing domain. In addition, due to the differences
between different domains, termed data bias or domain shift [25], machine learning mod-
els often do not generalize well from an existing domain to a novel unlabeled domain. To
address the domain shift issue, mechanisms for extracting feature representations from a
continuous intermediate space (between source and target representations) have been widely
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used in many tasks such as sentiment classification [3, 7], and object recognition [12, 13].
There are also several approaches to address the domain shift problem; a prominent one is
domain adaptation [12, 18, 32]. There have been efforts made in domain adaptation for both
semi-supervised [2, 5, 24] and unsupervised [4, 6, 23, 41, 42] variations of domain adap-
tation for the object recognition problem. We have completely labeled data in the source
domain in both cases. In the former case, the target domain contains a small amount of
labeled data, whereas, in the latter case, the target domain is entirely unlabeled. Often
the small amount of labeled target data alone is insufficient to construct a good classifier
because of the domain shift. Thus, how to effectively leverage sufficient labeled source data
to facilitate the usage of unlabeled target data is the key problem in domain adaptation. In
this paper, we focus on unsupervised domain adaptation.

However, a critical challenge remains: to find and identify useful features that span the
representation of two domains. The quality of learned features will directly affect classifi-
cation accuracy. We cannot expect to train a high-quality classifier if the learned features
are poor. Therefore, it is essential to define an intermediate space connecting the represen-
tation of the source domain to the target domain producing what we term a path and such a
path contains all intermediate spaces.

Manifold learning is an approach to identify the intermediate features between the source
and target domains via a Grassmannian manifold. Several methods exist to find such fea-
tures. Gopalan et al. [13] proposed a sampling geodesic flow (SGF) method to learn the
intermediate features (which reflect features as they change from those specific to the source
domain to those specific to the target domain in the sub-space via the geodesic (shortest
path) on a Grassmannian manifold. However, SGF has several limitations. Gong et al. [12]
noted that it is difficult to choose an optimal sampling strategy. Moreover, SGF has high
time complexity making sampling slow when many points are needed. They proposed a
geodesic flow kernel (GFK) model to overcome the limitations of unknown sampling size
in SGF. They integrated all samples along the geodesic as calculated by Gopalan et al. [13].
In prior work [43], we proposed geodesic sampling on Riemannian manifolds (GSM) and
found that the SGF “geodesic” is not the true geodesic. The GSM model provided a correct
way to sample the intermediate features along the correct geodesic. However, the points are
sampled in an analogous linear manner, but does not generate problematic deformations as
we will demonstrate in Section 5.1.

A number of efforts have been made to address the alignment of marginal distribution and
conditional distribution of data in domain adaptation. Wang and Mahadevan [34] aligned
the source and target domain by preserving the “neighborhood structure” of the data points.
Wang et al. [36] proposed a manifold embedding distribution alignment method (based on
work of Gong et al. [12]) to align both the degenerate feature transformation and the uneval-
uated distributions of both domains. However, none of these models explore the quality of
the learned features. Others have applied deep learning models to domain adaptation [8, 14,
21, 28, 31, 32, 39]. However, these methods mainly align the distribution of source and tar-
get domains, without considering the complex multimode model structure underlying the
data distribution, which leads to false alignment of data.

Our principal contributions are three-fold:

1. We are the first to propose a subspace sampling demon (SSD) approach for fast
intermediate feature learning;

2. We provide a quantitative evaluation of learned features, so that we are able to select
the best features for the image recognition problem. Evaluation of learned features can
be of value to future research on domain adaptation.
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3. To better represent the learned features and train a robust classifier, we align both
marginal and conditional distributions of source and target domains.

Extensive experiments on five highly competitive benchmark image datasets show that
SSD can significantly improve the classification accuracy over the state of the art.

2 Motivation

Existing methods that connect subspaces only learn features between source and target
domains in subspace without examining the quality of their learned features [12, 13], which
implies that the learned features may be sub-optimal, leading to reduced accuracy. In con-
trast, we formulate a subspace sampling demon method (focusing on shaped-based feature
learning), which generates more meaningful features. Specifically, we update the transfor-
mation changes in each iteration for better feature learning in Section 4.1. We discuss the
subspace sampling problem and then apply the sampling strategy to the recognition problem
in Sections 2.1 and 2.2.

2.1 Subspace sampling

Given training data XS = {xi}N1
i=1 (with dimensionality N1 × d, where N1 is number of

observations, and d is the number of features), and test data XT = {xj }N2
j=1 (N2 × d), to

learn features that connect XS to XT , we should solve the dimensionality disagreement of
source and target data, since the number of examples N1 can be different from N2, though
the number of features (d) of examples in XS and XT are the same. Therefore, we need to
construct a low-dimensional sub-space representation of the training and test data. There are
several methods for constructing low-dimensional representations (e.g., principal compo-
nent analysis (PCA) [15], Laplacian eigenmaps [1], and principal geodesic analysis (PGA)
[10]). In our paper, we use PCA to reduce the dimensionality of XS and XT as shown in
Algorithm 1. By using PCA, we get the source subspace X′

S (d×d ′) and target subspace X′
T

(d ×d ′) domains to represent original source XS and target XT data, respectively. Here d ′ is
the reduced dimensionality. The parameter d ′ can be tuned to get better application-specific
performance, which we discuss in Section 4.3. We then aim to sample more intermediate
subspaces between X′

S and X′
T . However, the samples should learn the geometry and distri-

bution in both the source and target domain. Now the issue is how to obtain an accurate and
meaningful intermediate sample between X′

S and X′
T , which we resolve in Section 4.1.
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2.2 Subspace learning for recognition

Given training data: XS , with its labels YS = {yi}N1
i=1 ∈ {1, 2, 3, · · · , C}, ∀i, one of C

categories, and the test data: XT with its labels YT = {yj }N2
j=1 ∈ {1, 2, 3, · · · , C}, ∀j and

N2 ≤ N1, that implies that we might not have all labels for testing data. If N2 = N1, which
means we have labels for every element of XT , then we want to build a model that can
predict labels of XT with accuracy as high as possible. If N2 < N1, we not only want to
get a high enough predictive accuracy, but also to predict the labels for the unlabeled data.
Another issue is how to predict the labels of test data by using the learned intermediate
sub-spaces between source X′

S and target X′
T , which we address in Section 4.3.

3 Background: demon registration

Before discussing our proposed demon sampling method, we first review the background
of demon registration.

In image registration, the task is to find a transformation in which the corresponding
locations (e.g., perhaps anatomical parts) are the same within two images. Let f be a point
in the target domain (X′

T ), and s be another point in the source domain (X′
S). Here we

treat X′
S and X′

T as two images. Proposed by Thirion [30], demon registration estimates the
displacement u (velocity) for any point in X′

T to match the corresponding point in X′
S :

u = (s − f )∇f

|∇f |2 + (s − f )2
, (1)

where u = (ux, uy) in 2D registration, and u = (ux, uy, uz) in 3D registration; ∇f is
the gradient of target image, and it is an internal edge force. s − f is the external force,
and (s − f )2 can make velocity more stable. Algorithm 2 describes the process for demon
registration, where U consists of u (u updates the x, y or x, y, z in translation of the pixel
from U ), and ◦ is the interpolation operation, which will update the image according to
φ + U , and φ + U are the coordinate points.

Ker is the Gaussian kernel for smoothing the velocity field, and Ker � U stands for
performing Gaussian kernel on transformation U . However, demon registration will take a
long time to register source and target image if there is significant difference between them.
itr1 should be large enough to guarantee good registration results. Also, the transformation
U will keep updating on X′

S ; there are no stages to show the step-wise changes in the image.
In the following section, we will show how our fast and multi-stage sampling demon method
can overcome these limitations.
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4 Experimental method

4.1 Fast sampling demon for feature learning

Unlike typical image registration techniques, we aim to get the intermediate features instead
of just the final transformation. We define a fast and muti-stage sampling demon model.
Given source data X′

S and target data X′
T , the sampling task is to find the intermediate

sub-space between X′
S and X′

T . (Notice that both source and target data are derived from
extracted features from a pre-trained network; we apply the image registration techniques
for features of the deep network). We aim to minimize following energy function:

E = 1

2

K∑

k=1

||X′
T − Xk ◦ (φk−1 + Uk)||2 + α2

2
σ 2||Uk||2, (2)

where φ is the transformation field in x and y direction, φ0 is the initial transformation
which is a null matrix with the same size as X′

S and X′
T ; Uk is the update transformation

field of each input image at phase k. α and σ control the regularity term (||Uk||2), which
regulates the smoothness of transformation. Xk is the intermediate feature, which is what
we want to learn from source domain to target domain and it can be updated by Xk =
Xk−1 ◦ (φk−1 +Uk). The first similarity term measures the similarity of the source data and
intermediate features. In the first iteration, X0 = X′

S , then Xk will keep updating at each
iteration.

To minimize the energy function in (2), we use Taylor expansion, and rewrite (2) as:

E′ = 1

2

K∑

k=1

||X′
T − Xk + Uk∇Xk)||2 + α2

2
σ 2||Uk||2, (3)

Taking the gradient of (3) with respect to Uk , we obtain:

∇Uk
E′ = ∇Xk(X

′
T − Xk + Uk∇Xk) + α2σ 2Uk (4)

Let ∇Uk
E′ = 0, we get the update transformation Uk as:

Uk = (Xk − X′
T )∇Xk

|∇Xk|2 + α2σ 2
(5)

Equation (5) only contains the internal force of learned intermediate feature Xk , to improve
the registration convergence speed and the stability. We add another internal force of ∇X′

T ,
and let σ be Xk − X′

T to get the new update transformation in our multi-stage model:

Uk = (Xk − X′
T )∇Xk

|∇Xk|2 + α2(Xk − X′
T )2

+ (Xk − X′
T )∇X′

T

|∇X′
T |2 + α2(Xk − X′

T )2

Xk = Xk−1 ◦ (φk−1 + Uk−1), (6)

where k = 1, · · ·K (K is the number of phases). By estimating Uk and Xk using gradient
descent, we can keep learning feature deformations from source to the target. Note that Xk is
just XS in the original demon registration [30], which cannot be updated in each phase. Our
SSD model could quickly find corresponding positions between the source and the target
image compared with earlier methods, but in addition it can explain model differences in
image appearance. We describe our SSD in Algorithm 3, where Ker ′ is the Gaussian kernel.
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The time complexity of Algorithm 2 is O(itr1×Ker), and the time complexity of Algo-
rithm 3 is O(K × itr2 × Ker ′). However, itr1 > K × itr2 and O(Ker) >> O(Ker ′),
therefore, our SSD model is faster than the original demon registration. In addition, Algo-
rithm 2 applies a Gaussian kernel in each iteration, which will reduce the resolution of the
registered image. In our SSD model, we have parameter kk, which controls when to start
the smoothing stage to help maintain the resolution of learned features.

4.2 Evaluation of learned features

Learning an intermediate feature from a source domain to a target domain is an unsupervised
process since data that can be used to give feedback to the model is rare. This is one reason
why there is no existing work that measures the quality of features in sub-space learning.
However, evaluating features is essential; we cannot accurately learn the domain changes
with poor feature learning methods. Here we explore two approaches.

4.2.1 Correlation (Corr)

First, we consider an initial method: correlation. We calculate the correlation of source and
target using (7) to measure the similarity between them, and such correlation can impact
final recognition results in Section 5.

r(A,B) =
∑

m

∑
n(Amn − Ā)(Bmn − B̄)

√
(
∑

m

∑
n Amn − Ā)2(

∑
m

∑
n Bmn − B̄)2

, (7)

where Ā and B̄ are the averages of the matrix elements. The range of the correlation is from
−1 (strong negative) to 1 (strong positive), while 0 indicates there is no correlation between
source data and target data.

4.2.2 Structural similarity (SSIM)

However, correlation is unable to represent the structure and position difference. There-
fore, we also consider a structure similarity metric to measure the similarity between
learned features Xk and target (X′

T ) data. The quality of an image can be assessed by three
characteristics of an image: luminance, contrast, and structure [37]. Based on these three
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characteristics, the structural similarity (SSIM) index can be constructed by the combination
of the three terms as described by Wang et al. [37]:

SSIM(x, y) = (2μxμy + C1)(2σxy + C2)

(μ2
x + μ2

y + C1)(σ 2
x + σ 2

y + C2)

where μx,μy, σx, σy , and σxy are the local means, standard deviations, and cross-
covariance for images x, y. The default is: α = β = γ = 1 and C1 = C2/2. The range of
the SSIM is from 0 to 1, where 1 indicates high similarity between source data and target
data, and 0 means they are not similar.

The evaluation of learned features (via the SSIM metric) will provide guidance for
selecting the best Xk for the recognition problem in Section 5.3.

4.3 Image recognition problem

As previously mentioned in Section 2.2, we need to predict the labels of test data by using
the learned intermediate sub-spaces. We address that issue here. By estimating the quality of
sub-space features from our SSD model in Section 4.2, we can select the best intermediate
features Xk and we are able to apply them in a recognition problem via constructing new
training and test data. The new training data is Xtrain = XS × Xk , and new test data is
Xtest = XT × Xk , where × is the multiplication operation and k is selected as the best
phase. In the initial stage, Xk only contains the source information, and it will contain both
the source and target information after several interactions. Therefore, we only need one
best feature Xk using evaluation methods, which can learn propagation information from
the source domain to the target domain. By training a classifier on Xtrain, we can predict
the labels of Xtest .

To better use the learned features, we also integrate the Manifold Embedded Distribution
Alignment (MEDA) method [36] to construct new features to train the classifier. MEDA
can align learned features from manifold learning. It has three fundamental steps: 1) learn
features from the manifold based on Gong et al. [12]; in our case, the features will be gen-
erated from our SSD method (from Algorithm 3); 2) use dynamic distribution alignment to
estimate the marginal and conditional distributions of data; and, 3) construct a new classifier
from previous steps (please refer to Wang et al. [36] for more details). However, the origi-
nal MEDA used the GFK model to learn manifold features, and GFK model is based on the
SGF model. We show the defects of the SGF model in Section 5.1. The modified classifier
(f ) is defined as:

f = arg min
f ∈∑n

i=1 Hk

l(f (Xtraini
), YSi

) + η||f ||2K + λDf (Ds ,Dt ) + ρRf (Ds ,Dt ) (8)

where l is the sum of squared error loss; Xtraini
is new training data; ||f ||2K is the squared

norm of f ; Df (·, ·) represents the dynamic distribution alignment; Rf (·, ·) is a Lapla-
cian regularization; η, λ, and ρ are regularization parameters. Specifically, Df (Ds ,Dt ) =
(1 − μ)Df (PS , PT ) + μ

∑C
c=1 Dc

f (QS ,QT ), where μ is an adaptive factor to balance
the marginal distribution (PS , PT ), and conditional distribution (QS ,QT ). By training the
classifier from (8), we can predict labels of test data. We solve the recognition problem by
using Algorithm 4.
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5 Results

In this section, we evaluate the performance of our SSD model through one synthetic dataset
and extensive experiments on large-scale public image datasets.

5.1 Synthetic data

In this experiment, we show the value of our learned features via the SSD method. We
compare our method with manifold-based feature learning methods SGF [13] and GSM
[43] to show shape deformation across samples. We first create one synthetic source square
and circle target image. The pixel values range from 0 to 1 (the pixel will be darker as it gets
closer to 1), and the image size is 50 × 50. As shown in Fig. 1, the source image is a square
(the leftmost of Fig. 1a), and the target image is a circle (the rightmost of Fig. 1a). The
progress of sampled images of the SSD, GSM and SGF models are shown in Fig. 1a-c. To
evaluate the quality of samples, there are two criteria. The sample should be similar to the
source image when t = 0, and the sample should be similar to the target image when t = 1
(t is the time step). The sampled images of the SSD model when t = 0.05 and t = 0.95 in
Fig. 1a are almost the same as the true square and circle, respectively. However, the sampled
images of the SGF model are far from the source and target images when t = 0.05 and
t = 0.95 [43].

There is one concern in the sampled image of both GSM and SGF models: the input
data are normalized as shown in the leftmost and rightmost images of Fig. 1b. Comparing
the original input images (leftmost and rightmost in Fig. 1a) with the normalized images
(leftmost and rightmost in Fig. 1b), a light gray background is mistakenly introduced in
GSM and a heavy gray in SGF. We also observe that the square shape is continuously
deformed in our SSD model, while both GSM and SGF only show a linear changed from a
square to a circle. In addition, there are two more issues in the sampled images of the SGF
method: first, its background is quite dark; beyond the normalization above, this is caused
by the Log map (the subtraction operation in the Riemannian space) not being correctly
calculated in Gopalan et al. [13] (as there are some negations of the estimated velocity v

between the source image and target image, which indicates the calculated “geodesic” is
not the true geodesic, and which will then similarly cause problems in the GFK model).
The second is that the shape is never unified, and this is caused by the Exp map (the add
operation in the Riemannian space) not approaching the target at t = 1 [13].

5.2 Public image recognition datasets

In these experiments, we show how our SSD method can enhance image recognition accu-
racy. We test our model using four public image datasets: Office10, Caltech10, Office-31
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Fig. 1 The comparison of sampling results between the two images (square and circle) with t =
0, 0.05, 0.5, 0.95, 1. Obviously, the SGF model does not generate a correct sample in (c), but our SSD model
can generate the correct sample in (a). For reference, the source image is on the far left at t = 0 and the target
image is the far right at t = 1 in Fig. 1a

and Office-Home [27, 36]. These datasets are widely used in many publications [12, 13, 36],
and are the benchmarking data for evaluating the performance of domain adaptation algo-
rithms by training in one domain and testing on another. Based on our prior experience [40,
43], we extract the features from the last fully connected layer for the four datasets from the
pre-trained Inception-ResNet-v2 (IR) network [29].1

Table 1 lists the statistics of these datasets. Office-10 [12] contains 1410 images in
10 classes from three domains: Amazon (A), Webcam (W), DSLR (D). Amazon images
are mostly from online merchants; Webcam and DSLR images are mostly from offices.
Caltech-10 [12] contains 1123 images in 10 classes from domain Caltech (C). Office-
31 [27] consists of 4,110 images in 31 classes from three domains: Amazon (A), Webcam
(W), and DSLR (D). Figure 2 shows mugs from three domains in the Office-31 dataset.
Office-Home [33] contains 15,588 images in 65 categories across four domains: Art (Ar),
denotes artistic depictions for object images, Clipart (Cl), describes picture collection of
clipart, Product (Pr), shows object images with a clear background, and Real-World (Rw)
represents object images collected with a regular camera.

In addition, we combine Office-10 and Caltech10 to be one dataset, and we per-
form twelve tasks (A2

4 = 12) in this dataset: C � A, C � W, · · · , D � W (where

1Inception-ResNet-v2 is a proposed architecture that performs highly on the ImageNet object recognition
task.
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Table 1 Statistics of benchmark datasets

Dataset # Samples # Features # Classes Domain(s)

Office-10 1410 1000 10 A, W, D

Caltech-10 1123 1000 10 C

Office-31 4110 1000 31 A, W, D

Office-Home 15588 1000 65 Ar, Cl, Pr, Rw

C � A means learning knowledge from domain C and applying it to the recognition
task in domain A). There are another six tasks (A2

3 = 6) and twelve tasks (A2
4 = 12)

in Office-31 and Office-Home datasets. Therefore, we have a total of 30 tasks in our
experiment.

To show the robustness of our extracted Inception-ResNet-v2 (IR) features based on
Keras, we show a t-SNE [22] view of extracted features. As shown in Fig. 3, the extracted
IR features produce clearer and better separated clusters than SURF [12], DeCAF [36], and
Resnet50 [39] features. Therefore, we can assume that the IR features will lead to better
classification results than the others. Similarly, the visualizations based on the IR features
have the lowest loss values.

Fig. 2 Example images from the mug category in Office-31. The first row is from Amazon domain, the
second row is from DSLR domain and the last row is from Webcam domain
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Fig. 3 The t-SNE [22] view of the comparison of our IR features (a, d and g) with DeCAF (b and e), Resnet50
(h), and SURF features (c and f). Different color means different classes. The first row is from DSLR domain
in Office+Caltech-10 datasets, and the second row is from the Webcam domain in the Office-31 dataset, and
(g) and (h) are from the Art domain in Office-Home dataset

5.3 Comparison to state-of-the-art methods

Table 2 shows the correlation between source and target data after using PCA to reduce the
dimensionality of the original source and target data in Office-31 dataset. Here, A ←→ W
means the correlation from A −→ W is the same as W −→ A. We observe that A ←→ W
has relatively low correlation, which implies that the source domain is quite different from
target domain since 0.0021 is close to 0 (indicating no correlation). We also measure struc-
ture similarity to evaluate learned features from the SSD model. As shown in Fig. 4, there
are six tasks (Office-31 dataset), and as the number of iterations grows, the SSIM index
increases, which implies that the sampled intermediate features Xk from our SSD model
are meaningful since they contain information from both source and target data. Xk=0 only
contains information from the source domain; with increasing values of k, more informa-
tion from the target data can be learned, whereas source information is also included. We

Table 2 Correlation of source and target in the Office-31 dataset

Task A ←→ W A ←→ D W ←→ D

Correlation 0.0021 -0.0096 -0.0057
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Fig. 4 The similarity between learned intermediate features (Xk) and target domain in the Office-31 dataset.
We then select the best Xk with highest similarity for the recognition task

find the SSIM index tends to converge after a large number of iterations, and the conver-
gence suggests that the learned features should be good enough for predicting the labels in
the test data. Table 3 shows the results of using each of the evaluation methods; the SSIM
index presents a higher performance, so we use the SSIM index as the evaluation measure
in all experiments.

We compare the performance of our SSD model with 22 state-of-the-art methods. To
ensure a fair comparison, all traditional methods are tested using our IR features (and named
ending with “-IR” in Tables 4, 5, 6 and 7) and Figs. 5, 6 and 7. Bold numbers reflect the
highest accuracy in each task in Tables 2, 3, 4, 5, 6, and 7.

5.4 Analysis of experimental results

As previously mentioned, we compare our predictive accuracy with 22 benchmark methods.
From Tables 4, 5 and 7 and Figs. 5, 6, and 7 we can make several observations: first of all,
the accuracy of our SSD model is above all other methods in most tasks. Notably, our model
beats all other models in the Office-Home datasets. Across all four datasets, the overall
average performance significantly improves upon the state-of-the-art baseline methods.

Table 3 Accuracy (%) on Office-31 datasets using two evaluation methods

Task A � W A � D W � A W � D D � A D � W Average

Corr 90.3 90.8 77.7 98.8 77.3 96.9 88.6

SSIM 92.7 91.6 77.5 99.4 77.8 98.0 89.4
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Table 4 Accuracy (%) on Office-Home datasets

Task Ar�Cl Ar�Pr Ar�Rw Cl�Ar Cl�Pr Cl�Rw Pr�Ar

SVM-IR 47.1 71.2 77.6 60.4 68.8 68.9 62.9

1NN-IR 45.6 67.7 73.1 59.9 67.2 67.5 65.1

GFK-IR [12] 37.8 63.1 68.3 52.7 61.3 62.8 55.6

BDA-IR [35] 41.6 65.5 70.2 53.6 63.3 65.7 56.3

JDA-IR [18] 47.1 69.4 73.2 59.1 66 68.5 62.7

TJM-IR [19] 46.7 69.1 73.1 57.3 65.2 68.2 59.3

JGSA-IR [38] 41.1 67.7 70.4 40.2 62.4 60.8 50.4

MEDA-IR [36] 47.6 71.4 76.7 63.5 73.6 73.4 63.7

GSM-IR [43] 55.0 80.6 82.1 66.6 81.5 80.1 68.0

DCORAL [28] 32.2 40.5 54.5 31.5 45.8 47.3 30.0

RTN [20] 31.3 40.2 54.6 32.5 46.6 48.3 28.2

DAH [33] 31.6 40.8 51.7 34.7 51.9 52.8 29.9

MDDA [26] 35.2 44.4 57.2 36.8 52.5 53.7 34.8

DAN [16] 43.6 57.0 67.9 45.8 56.5 60.4 44.0

DANN [11] 45.6 59.3 70.1 47.0 58.5 60.9 46.1

JAN [21] 45.9 61.2 68.9 50.4 59.7 61.0 45.8

CDAN-RM [17] 49.2 64.8 72.9 53.8 62.4 62.9 49.8

CDAN-M [17] 50.6 65.9 73.4 55.7 62.7 64.2 51.8

SSD 54.1 80.1 80.9 68.2 81.1 80.1 69.9

Task Pr�Cl Pr�Rw Rw�Ar Rw�Cl Rw�Pr Average

SVM-IR 48.4 78.1 68.6 49.0 79.3 65.0

1NN-IR 48.1 76.6 68.6 49.8 76.4 63.8

GFK-IR [12] 41.6 72.8 61.6 43.7 72.8 57.8

BDA-IR [35] 44.8 73.3 62.8 48.9 74.4 60.0

JDA-IR [18] 48.7 75.8 67.0 51.8 77.9 63.9

TJM-IR [19] 47.8 75.9 65.9 52.0 76.8 63.1

JGSA-IR [38] 42.2 66.0 51.5 43.8 68.5 55.4

MEDA-IR [36] 49.4 78.0 68.5 50.4 79.4 66.3

GSM-IR [43] 54.0 81.9 70.6 57.8 83.6 71.8

DCORAL [28] 32.3 55.3 44.7 42.8 59.4 42.8

RTN [20] 32.9 56.4 45.5 44.8 61.3 43.5

DAH [33] 39.6 60.7 45.0 45.1 62.5 45.5

MDDA [26] 37.2 62.2 50.0 46.3 66.1 48.0

DAN [16] 43.6 67.7 63.1 51.5 74.3 56.3

DANN [11] 43.7 68.5 63.2 51.8 76.8 57.6

JAN [21] 43.4 70.3 63.9 52.4 76.8 58.3

CDAN-RM [17] 48.8 71.5 65.8 56.4 79.2 61.5

CDAN-M [17] 49.1 74.5 68.2 56.9 80.7 62.8

SSD 55.8 82.1 72.9 57.2 84.3 72.3

Secondly, the performance of other baselines methods includes distribution alignment-
based methods (TJM [19], BDA [35], JDA [18], JGSA [38]) and manifold learning-based
methods (GFK [12], MEDA [36]) which have lower performance than our methods. And

23267Multimedia Tools and Applications (2021) 80:23255–23274



Table 5 Accuracy (%) on Office + Caltech 10 datasets

Task C � A C � W C � D A � C A � W A � D W � C

SVM-IR 95.2 94.6 93.6 92.3 88.8 87.3 93.2

1NN-IR 92.6 93.9 96.2 91.9 89.8 92.4 93.4

GFK-IR [12] 91.8 94.9 94.9 92.3 87.5 90.4 93.1

BDA-IR [35] 93.7 94.6 94.9 92.6 90.8 90.4 92.8

JDA-IR [18] 93.5 94.6 94.9 92.3 91.9 91.7 93.2

TJM-IR [19] 93.8 95.3 94.9 92.1 92.2 91.7 93.4

JGSA-IR [38] 95.8 95.9 94.9 93.1 89.8 95.5 94.9

MEDA-IR [36] 96.2 95.9 96.2 95.2 98.0 96.8 94.5

GSM-IR [43] 96.1 95.3 96.2 94.2 98.6 98.1 95.1

DAN [16] 92.0 90.6 89.3 84.1 91.8 91.7 81.2

DDC [32] 91.9 85.4 88.8 85.0 86.1 89.0 78.0

DCORAL [28] 89.8 97.3 91 91.9 100 90.5 83.7

RTN [20] 93.7 96.9 94.2 88.1 95.2 95.5 86.6

MDDA [26] 93.6 95.2 93.4 89.1 95.7 96.6 86.5

SSD 96.2 96.2 96.2 94.9 98.3 98.3 98.1

Task W � A W � D D � C D � A D � W Average

SVM-IR 95.4 98.7 92.5 94.5 98.6 93.7

1NN-IR 94.9 99.4 92.3 94.2 98.6 94.1

GFK-IR [12] 95.2 99.4 92.4 94.6 98.0 93.7

BDA-IR [35] 95.3 98.7 91.7 93.9 98.0 94.0

JDA-IR [18] 95.4 98.7 92.2 94.20 98 94.2

TJM-IR [19] 95.5 98.7 92.2 94.7 98.3 94.4

JGSA-IR [38] 95.5 100 93.9 96.2 99.0 95.4

MEDA-IR [36] 96.2 99.4 93.8 95.4 98.6 96.4

GSM-IR [43] 96.3 100 94.2 95.7 98.6 96.5

DAN [16] 92.1 100 80.3 90.0 98.5 90.1

DDC [32] 83.8 100 79.0 87.1 97.7 86.1

DCORAL [28] 81.5 90.1 88.6 80.1 92.3 89.7

RTN [20] 92.5 100 84.6 93.8 99.2 93.4

MDDA [26] 94.8 100 84.7 94.7 99.4 93.6

SSD 98.1 98.7 96.2 96.2 99.3 97.2

each method has their own limitations; they cannot guarantee the high accuracy of most
tasks (e.g., although TJM and JDA have the highest accuracy in some tasks, they lose supe-
riority in other tasks). Our model also wins against a number of deep learning models (DAN
[16], DDC [32], MDDA [26], DCORAL [28], RTN [20], ADDA [31], CAN [39], JDDA
[8] and JAN [21]). As shown in Table 6, we also test our model using the lower quality
Resnet50 features; it still shows that our SSD model is better than other methods, as the aver-
age accuracy of the Resnet50 feature (94.8%) is lower than that of the IR feature (98.1%).
This further demonstrates that we not only take advantage of better input features (which
are extracted from the pre-trained Inception-ResNet-v2 model) but SSD can better align the
features from source to target domain.
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Table 6 Accuracy (%) on Office + Caltech 10 datasets with Resnet50 feature

Task SVM 1NN GFK [12] BDA [35] JDA [18] TJM [19] JGSA [38] MEDA [36] SSD

C � A 94.2 90.2 91.6 90.8 90.8 91.9 93.4 94.4 95.5

C � W 89.5 84.1 88.1 90.8 90.8 91.5 87.8 93.9 93.9

C � D 91.1 90.4 88.5 86.0 88.5 87.9 88.5 95.5 95.5

A � C 85.3 85.6 85.6 86.4 88.1 87.0 86.7 90.8 91.5

A � W 83.1 85.8 87.5 89.2 89.5 90.2 95.9 96.0 96.9

A � D 84.1 89.2 90.4 88.5 89.2 88.5 93.6 94.1 94.3

W � C 85.1 86.6 86.4 85.2 87.9 87.8 90.1 91.5 91.1

W � A 89.0 91.0 91.3 91.1 90.8 92.2 94.8 94.1 94.7

W � D 100 98.7 98.7 98.7 98.1 97.5 100 100 100

D � C 81.5 82.7 83.9 81.6 83.8 84.1 89.8 88.8 89.4

D � A 86.4 86.7 89.1 88.5 90.4 90.0 94.7 94.2 94.8

D � W 93.6 97.6 97.6 96.6 96.3 95.6 99.7 99.0 100

Average 88.6 89.1 89.9 89.5 90.4 90.4 92.9 94.4 94.8

Two compelling reasons cause the high accuracy of our SSD model. First, we
implement subspace sampling demons to learn better features connecting source and
target domains. As shown in Fig. 1, our SSD model can reveal a smooth transi-
tion from a square to a circle, while other methods based on SGF cannot show this
smooth deformation. Second, we extract features from a well-trained Inception-ResNet-
v2 (backbone) model, which is also beneficial for better feature representation as shown
in Fig. 3.

Table 7 Accuracy (%) on Office-31 datasets

Task A � W A � D W � A W � D D � A D � W Average

SVM-IR 81.5 80.9 73.4 96.6 70.6 95.1 83.0

1NN-IR 80.3 81.1 71.8 99.0 71.3 96.4 83.3

GFK-IR [12] 78.1 78.5 71.7 98.0 68.9 95.2 81.7

BDA-IR [35] 77.0 79.3 70.3 97.0 68.0 93.2 80.8

JDA-IR [18] 79.1 79.7 72.9 97.4 71.0 94.2 82.4

TJM-IR [19] 79.1 81.1 72.9 96.6 71.2 94.6 82.6

JGSA-IR [38] 81.1 84.3 76.5 99.0 75.8 97.2 85.7

MEDA-IR [36] 90.8 91.4 74.6 97.2 75.4 96.0 87.6

GSM-IR [43] 90.7 91.2 74.8 96.8 75.2 95.3 87.3

DAN [16] 80.5 78.6 62.8 99.6 63.6 97.1 80.4

RTN [20] 84.5 77.5 64.8 99.4 66.2 96.8 81.6

DANN [11] 82.0 79.7 67.4 99.1 68.2 96.8 81.6

ADDA [31] 86.2 77.8 68.9 98.4 69.5 96.2 82.9

CAN [39] 81.5 65.9 98.2 85.5 99.7 63.4 82.4

JDDA [8] 82.6 79.8 66.7 99.7 57.4 95.2 80.2

JAN [21] 85.4 84.7 70.0 99.8 68.6 97.4 84.3

SSD 92.7 91.6 77.5 99.4 77.8 98.0 89.4
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Fig. 5 The mean accuracy of all tasks in Office-Home dataset

6 Discussion

One obvious strength of our model is the higher accuracy than other methods. We compare
our model SSD with the best baseline method (GSM), the p-values of relative improve-
ment using student t-test of Office + Caltech 10, Office-31 and Office-Home datasets are

Fig. 6 Mean accuracy per approach across all tasks in Office+Caltech 10 dataset
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Fig. 7 The mean accuracy of all tasks in Office31 dataset

0.0037, 0.0028 and 0.00086, respectively, suggesting that our model significantly improves
the image recognition accuracy. In addition, we list the reduced error rate of the proposed
SSD model and the best baseline method in Table 8. The biggest reduction achieves 25%.
The reduced error rate of Office-Home datasets is 1.81%, pointing out that Office-Home
is a more challenging dataset since it contains more images and classes, and more domain
shifts can be observed. It is also difficult to make significant improvements. However, we
achieve a 15.12% improvement over the best deep learning-based model CDAN-M [17].
The high performance of our model is caused by the two reasons, as mentioned earlier:
better intermediate features and better extracted backbone features.

However, one disadvantage is that the subspace sampling demon model takes more time
to compute than some methods, as shown in Table 9. We can observe that our model SSD
needs more time than four traditional methods (GFK, BDA, JDA, and GSM) since we need
to find the optimal intermediate features. However, we still take less time than deep learning
based models (DAN and JAN) since deep learning models need to re-train all images. Our
SSD only focuses on extracted features without re-training on the original images. In addi-
tion, the dimensionality is another tuning parameter in our model, which also takes some
time. Also, our model does not consider multiple objects in one image, and the number of
classes in the source and target domains are the same as stated in Section 2.2.

An interesting phenomenon is that the performance of deep neural networks (e.g.,
MDDA model in Office + Caltech 10 and Office-Home datasets) are worse than some
non-domain adaptation methods (e.g., SVM), when using our extracted IR features. For

Table 8 Average reduced error rate of best baseline and SSD model

Task Best Baseline SSD Reduction

Office+Caltech-10 GSM [43]: 3.50 2.80 25.00%

Office-31 GSM [43]: 12.40 10.60 16.98%

Office-Home MEDA [36]: 28.20 27.70 1.81%
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Table 9 Computation time (Seconds) comparison on Office31 dataset

Task GFK [12] BDA [35] JDA [18] GSM [36] DAN [16] JAN [21] SSD

A � W 0.88 50.24 51.95 33.21 730.74 890.20 656.50

A � D 0.76 41.18 41.71 27.93 493.09 540.85 411.03

W � A 0.76 49.48 51.06 15.12 830.78 950.37 663.16

W � A 0.40 5.57 5.89 8.26 493.58 620.58 401.30

D � A 0.65 42.27 42.93 9.98 505.80 628.04 413.79

D � W 0.33 5.26 5.42 6.78 492.85 530.83 399.54

Average 0.63 32.33 33.16 16.88 591.14 693.48 490.88

example, the performance of MDDA is 86.5%, which re-trains all images, while SVM is
not a domain adaptation method, and achieves 93.7% using our extracted IR features. This
demonstrates the extracted IR features are better than the features from those deep neu-
ral networks. However, our SSD model still outperforms the traditional methods using the
same IR features, which demonstrates the value of the SSD method in domain adaptation
for image recognition.

7 Conclusion

We have presented a fast subspace sampling demon method to learn intermediate subspace
features from the source domain to the target domain. We then evaluate the quality of
learned features. To better represent the features, we construct one distribution alignment
model. The results on synthetic data reveal the superiority of the SSD approach in learn-
ing detailed features. The extensive experiments from benchmark datasets show significant
improvements in classification accuracy compared to state-of-the-art methods. Therefore,
we can conclude that the subspace sampling demon model is useful in bridging the gap
between the source and target domain, and the best intermediate features can be selected
by evaluation methods, which will lead to high performance in the domain adaptation
problem.

There are some obvious next steps for follow-up work. Firstly, testing on a broader set of
unsupervised domain adaptation problems will demonstrate the wider applicability of our
model. Secondly, a better metric to quantify the quality of learned features will be beneficial
for increasing predictive accuracy.
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