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Abstract

Transductive learning exploits the connection between training and test data to im-
prove classification performance, and the geometry of the manifold underlying the training
and the test data is essential to make this connection explicit. Existing approaches pri-
marily focus on Grassmannian manifolds, while much less is known regarding other
manifolds, which can potentially bring increased computational and learning performance.
In this paper, we close the gap and formulate a novel and more general geodesic sam-
pling approach on Riemannian manifolds (GSM) that encompasses Sphere, Kendall, and
Grassmannian manifolds. To provide practical guidance for classification, we explore
extensive hyperparameter settings and baselines, including deep transfer learning models.
The results show that the new method can enable more accurate and less computationally
expensive geodesic sampling on the sphere manifold, which is not possible to achieve
using the existing Grassmannian manifold.

1 Introduction
Transductive learning takes advantage of unlabeled test data during training and can outper-
form inductive learning that has to train a model without test data. Prior transductive learning
approaches need to make a strong assumption that the distributions of training and test data
are the same. On one hand, traditional transductive learning paradigms assume that the two
distributions are the same, so that information embedded in the test data will be useful in
augmenting the training data to aid the learning task. For example, transductive SVM and
semi-supervised learning on graphs exploit the data density estimated from a large amount of
test data to train a more accurate SVM [9, 12]. On the other hand, it is also assumed that test
data can be different from training data in their posteriors p(y|x) or marginals p(x). For exam-
ple, to learn a latent feature space in which both domains have similar distributions, structural
correspondence learning approaches have been proposed [4, 6, 7, 8, 37]. For semi-supervised
domain adaptation, Daume and Marcu [14] designed a model to find similar data distributions
of both source and target domains. Subsequent work includes approaches that combine
co-training and domain adaptation using labels from either domain [45], semi-supervised
learning based on EM algorithms [13], co-regularization [29] and projecting data to kernel
Hilbert space [38]. There has also been theoretical work addressing the classification error
across domains [3].
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We focus on transductive learning using manifolds that smoothly connect the potentially
different geometries of the training and test data to facilitate transductive transfer learning.
Simard et al. [42] proposed tangent distance and tangent propagation algorithms using a Lie
group (a special manifold) for image recognition. Gopalan et al. [22] proposed sampling
geodesic flow (SGF) to learn the intermediate features between the source and the target
domain via Grassmannian manifolds, and then using all intermediate feature vectors to train
the classifiers and evaluate on test data. (A geodesic is a curve representing the shortest
path between two points on a manifold.) However, SGF has high time complexity making
sampling slow when the sample size is large. Gong et al. [21] proposed geodesic flow kernel
(GFK) method to address the limitations in SGF. However, the reduced dimensionality of data
is an important parameter of the GFK model; it needs to calculate the optimal dimensionality.
In addition, it has the constraint that the size of dimensionality should be less than half of the
minimum dimension of training and testing data, which is d < 1

2 min(l(train), l(test)), where
l refers to the number of features. In addition, GFK works best only if the dimensionality
is significantly larger than the sample size. Wang and Mahadevan [49] aligned the source
and target domains by preserving the ‘neighborhood structure’ of the data points. Wang et al.
proposed a manifold embedding distribution alignment method to align both the degenerate
feature transformation and the unknown distribution of both domains [51]. However, all prior
manifold-based approaches only focus on Grassmannian manifolds and cannot be generalized
to other manifolds that are potentially useful for transductive learning.

To address these challenges, we propose an improved Geodesic Sampling model (GSM)
to generalize prior work to include Riemannian manifolds that can be potentially more useful
for transductive learning. More specifically, we present geodesic sampling formulations and
algorithms to apply GSM to sphere and Kendall’s shape manifolds. For highest absolute
performance, we also create two updated datasets (Office + Caltech 10, Office 31 and Office-
Home) for domain adaptation whose features are extracted using a pre-trained Xception deep
neural network [11]. Our empirical results find that the much simpler sphere manifold often
works better than the more commonly adopted Grassmannian manifolds and encourages
more efficient computation. Extensive experiments demonstrate significant improvements in
classification accuracy over state-of-the-art methods.

2 Background
Existing manifold-based methods only learn features between the source and target domains
on Grassmannian manifolds [21, 22]. They also fail to generate correct samples along their
“geodesic path” which is from the source to the target domain. Classification accuracy is
also not high using these incorrect samples. In contrast, we formulate a generalized model
that can be applied in any Riemannian manifold, and which generates sample intermediate
points that are along the true geodesic path. Specifically, we learn the geodesic between two
domains by using the geometry of data without making any assumptions about the domain
shift transformation. Description of the problem is given in the following section.

Here we discuss the general sampling problem on manifolds and then apply sampling
strategies to the problem of classification. Given training data (source data): X ′S = {xi}N1

i=1
(has the size of N1×d, where d is the number of features of the source data), with the labels
YS = {yi}N1

i=1,yi ∈ {1,2,3, · · · ,C},∀i denoting one of C categories, and the test data (target
data): X ′T = {x j}N2

j=1 (has the size of N2×d), with the labels Yt = {yi}N3
i=1 and N3 ≤ N2, which

means we might not have all labels for testing data. If N3 = N2, which means we have labels
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for X ′T , then we want to build a model that can predict labels of X ′T with accuracy as high as
possible. If N3 < N2, we not only want to get a high enough predictive accuracy, but also
predict the labels for the unlabeled data. Typically, one constraint of sampling on manifolds
is that it requires the same dimensions of X ′S and X ′T [21, 22]. While the number of features
(d) of examples in X ′S and X ′T should be the same, the number of examples N1 can be different
from N2, and usually N1 >> N2, if we want to get a high predictive accuracy on test data.
Therefore, we need to construct a low-dimensional sub-space representation of the train and
test data. There are several methods for constructing low-dimensional representations (e.g.,
principal component analysis (PCA) [26], Laplacian eigenmaps [2], and principal geodesic
analysis (PGA) [17]). We use PCA to realize the dimensionality agreement in subspace. After
computing the new subspace XS and XT representations of X ′S and X ′T , respectively, we have
two questions to answer: (i) how to obtain correct and meaningful intermediate samples with
0≤ t ≤ 1 from XS to XT (where t represents time); and, (ii) how to predict the test labels by
using the samples of intermediate sub-spaces.

3 Our Approach: Geodesic Sampling on Manifold (GSM)

We first review the geometry of three manifolds (Sphere, Kendall’s shape and Grassmannian
manifold), and then present detailed algorithms to calculate samples.

3.1 Riemannian Geometry

In this section, we briefly review three basic concepts (geodesic, exponential and logarithmic
map) of Riemannian geometry (while more details are provided by others [15, 18, 39]).

Geodesic. Let (M,g) be a Riemannian manifold, where g is a Riemannian metric on
the manifold M. A curve γ(t) : [0,1]→ M and let γ ′(t) = dγ/dt to be its velocity. The
operation D ·/dt is called a covariant derivative (also called a connection on M), which is
denoted as ∇γ ′(t) or ∇γ ′ . A vector field V (t) along γ is parallel if DV (t)

dt = ∇γ ′V = 0. We

call γ a geodesic if γ ′(t) is parallel along γ , that is: γ ′′ = Dγ ′

dt = ∇γ ′γ
′ = 0, which means

the acceleration vector (directional derivative) γ ′′ is normal to Tγ(t)M (the tangent space of
M at γ(t)). A geodesic is also a curve γ ∈M that locally minimizes E(γ) =

∫ 1
0 ||γ ′(t)||2dt.

Here || · || is called Riemannian norm, for any points XS ∈M, and v ∈ TXS M, ||v|| is defined
by: ||v||=

√
gXS(v,v). gXS(u,v) is called Riemannian inner product of two tangent vectors

u,v ∈ TXS M, which can also be denoted by 〈u,v〉XS
or simply 〈u,v〉. The norm of velocity in a

geodesic γ is constant, that is: ||γ ′(t)||= c [18]. In Fig. 1, the red curve is the geodesic given
the base point XS and the initial velocity v. Note that geodesics are straight lines in Euclidean
space (Rn).

Exponential Map. For any point XS ∈ M and its tangent vector v, let D(XS) be the
open subset of TXS M defined by: D(XS) = {v ∈ TXS M|γ(1) is defined}, where γ is the unique
geodesic with initial conditions γ(0) = XS and γ ′(0) = v. The exponential map is the map
ExpXS

: D(XS)→ M defined by: ExpXS
(vt=1) = γ(1), which means the exponential map

returns the points at γ(1) when t = 1. If ω ∈ D(XS), then the line segment {tω|0≤ t ≤ 1} is
constrained to be in D(XS). We then define: ExpXS

(vt) = γ(t), where 0≤ t ≤ 1.
Intuitively, Exp generates points on the geodesic as a function of the starting point, tangent

vector, and t. Fig. 1 calculates the geodesic given the base point XS, and initial velocity
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v. For reference, in Euclidean space the exponential map is the addition operation (Rn):
ExpXS

(vt) = XS + vt [18, 39].

Figure 1: Illustration of the Exp map of our
model. XS is a base point of tangent space, v
is the velocity at point XS, t is the time, the
red curve is the geodesic line with the increase
of t giving the base points XS and v. XS is the
sample at t = 0, and XT is the sample at t = 1.
St are sampled points (black points on the red
curve) on the geodesic.

Logarithmic Map. Given two points
XS and XT ∈M, the logarithmic map takes
the point pair (XS,XT ) and maps them into
the tangent space TXS M, and it is an inverse
of the exponential map: Log(XS,XT ) →
TXS M. Log(XS,XT ) can also be denoted
as: LogXS

XT . Because Log is an inverse
of the exponential map, we can also write:
XT = Exp(XS,Log(XS,XT )). The Rieman-
nian distance is defined as d(XS,XT ) =
‖LogXS

(XT )‖. In Euclidean space (Rn), the
logarithmic map is the subtraction operation:
LogXS

(XT ) = XT −XS [53].

3.2 Methods
Given source data XS, and target data XT ,
we could get samples S between XS and XT .
Eq. 1 is our generalized GSM model to sam-
ple points on Riemannian manifolds, which, unlike prior work, is applicable to any manifold.

St = Exp(XS,v× t), (1)

where 0≤ t ≤ 1, with S0 = XS and S1 = XT , and velocity (v) is calculated from XS to XT by
the Log map, which is defined as v = Log(XS,XT ).

Algorithm 1 Geodesic Sampling on Rieman-
nian Manifolds
Input: XS, XT , Sample size: N
1: Calculate v according to v = Log(XS,XT )
2: For t = 0 : (1/(N−1)) : 1
3: Calculate St according to Eq. (1)
4: end

In the following sub-sections, we give
formulations of Log and Exp map to calcu-
late the samples on three manifolds. After
calculating the Log map and the Exp map
on each manifold, we use Alg. 1 to sample
points between XS and XT .

3.3 Sphere manifold
One of the well-known spherical manifolds is the 3D sphere (2D surface embedding in 3D
space). Let r be the radius of the sphere, u the azimuth angle and v the zenith angle. Then any
points on the 3D sphere can be expressed by: X = (r sin(u)sin(v),r cos(u)sin(v),r cos(v)).
The generalized n−1 dimensional hyper-sphere embedded in Rn Euclidean space (x1,x2, · · · ,xn)
has the constraint of: ∑

n
i=1 x2

i = r2, where r is the radius of such a hyper-sphere (we set r = 1).
Let XS and XT be such points on on a sphere embedded in Rn, and let v be a tangent vector at
XS.

The Log map between XS and XT can be computed as follows:

v = Log(XS,XT ) =
θ ·L
||L||

, θ = arccos(〈XS,XT 〉), L = (XT −XS · 〈XS,XT 〉) (2)

where XS · 〈XS,XT 〉 denotes the projection of the vector XT onto XS. ||L|| is the Riemannian
norm as defined in Section 3.1.
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Given base point XS, and its estimated tangent vector v from Eq. 2 and t, we can compute
the Exp map as:

Exp(XS,vt) = cosθ ·XS +
sinθ

θ
· vt, θ = ||vt||. (3)

This explanation is based on that of Wilson and Hancock [52], where additional details of
Log map and Exp map on the Sphere manifold can be found.

3.4 Kendall’s shape manifold
A more complex manifold was studied by David G. Kendall [27]. Kendall’s shape can
provide a geometric setting for analyzing arbitrary sets of landmarks. The landmark points
in Kendall’s space are a collection of points in Euclidean space. Before calculating the Log
and Exp maps, we use some transformations (scale and rotation) to get the pre-shape space
representation of data.

Given two shapes XS,XT ∈V with d×n matrix (d is the dimension of the shape, n is the
number of points), to construct Kendall’s shape space, first, we remove the translation and
scale of the shape. To get the prep-shape space representation of an object, we eliminate
the centroid (subtract the row means from each row) and scale it into unit norm (divide
by the Frobenius norm). Then, we remove the rotation of the shape using Orthogonal
Procrustes Analysis (OPA) [23]. OPA solves the problem of finding the rotation R∗ that
can minimize the distance between XS and XT : R∗ = arg minR∈SO(d)||RXS −XT ||, where
SO means a special orthogonal group. OPA performs singular value decomposition of
XS ·XT

T ; let [U,S,V ] = SVD(XS ·XT
T ), then R∗ = UV T . Similar to the sphere manifold, the

Log map between two shapes XS,XT of Kendall’s shape manifold is given by finding the
rotation between XS and XT first. To find the rotation of XT , we calculate the singular value
decomposition of XS ·XT

T ; then we find the rotation of XT by XT (Rot) = R∗ ·XT . Then the Log
map is given by:

v = Log(XS,XT ) =
θ ·L
||L||

, θ = arccos(
〈
XS,XT (Rot)

〉
), L = (XT (Rot)−XS ·

〈
XS,XT (Rot)

〉
),

(4)
where XS ·

〈
XS,XT (Rot)

〉
denotes the projection of the vector XT (Rot) onto XS.

The Exp map on Kendall’s shape manifold is the same as the sphere manifold (Eq. 3).
Please refer to Kendall [27] to see additional details of Log map and Exp map on Kendall’s
shape manifold.

3.5 Grassmannian manifold
Before we introduce the Exp and Log map of the Grassmannian manifold, we should get the
subspace of the data, since the Grassmannian manifold GN,d is defined as a d−dimension
subspace. Therefore, it is necessary to use PCA to get the subspace (submanifold) of
Grassmannian manifold. Please refer to Fletcher et al. [17] for more details.

Suppose that we get the subspaces from PCA of the data (that is XS and XT ) and they
have the same dimensionality. Again to get the sampling from XS to XT , we need to calculate
the Log map and Exp map. Please refer to Edelman et al. [16] and Absil et al. [1] to see the
details of geometry on the Grassmannian manifold. Unlike Gallivan et al. [19] in which the
calculation of Exp and Log map is complex and time-consuming (because of additional QR
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(a) Progression of samples using GSM (b) Progression of samples using SGF

Figure 2: The comparison of sampling results between the two images (square and circle)
with t = 0,0.05,0.5,0.95,1. Obviously, the SGF model does not generate a correct sample in
(b), but our GSM model can create the correct sample in (a). For reference, the source image
is the far left at t = 0 in Fig. 2(a), and the target image is the far right at t = 1 in Fig. 2(a).

decomposition), we use simpler calculations. The Log map is given by:

X = (I−XS ·XT
S ) ·XT · (XT

S ·XT )
−1, [U,s,V ] = SVD(X),

v = Log(XS,XT ) =U ·θ ·V T , θ = arctans,
(5)

where I is the identity matrix. Here θ is the principal angle between subspace XS and ST .
The exponential map is computed from base point XS and the estimated initial velocity v:

[U,θ t,V ] = SVD(vt), Exp(XS,vt) = XS ·V · cos(θ t)+U · sin(θ t) ·V T , (6)

However, one limitation of calculating Exp and Log map is that the number of columns
should be minimized. If the column dimensionality is larger than one, the error will increase
(Error = norm(Exp(Xs,Log(Xs,Xt))−Xt)).1 To address this concern, we reshape the data
(D×N) into a single column dimension ((D×N)×1) since that will minimize the error.2

After calculating Exp and Log map, we then reshape the data into D×N to reconstitute the
original data dimensionality.

4 Experiments
We first show the disadvantages of the SGF model using an image sampling progression task,
and then conduct extensive experiments in transductive learning for image recognition tasks.

4.1 Defects of the SGF model
Given two images, we calculate the progress of changing from source to target image. For
example, as shown in Fig. 2(a), the source image is a square (the leftmost object of Fig. 2(a))
and the target image is a circle (the rightmost object of Fig. 2(a)); while the progress of
sampled images of GSM and SGF model are shown in Figures 2(a) and 2(b). To evaluate the
quality of samples, there are two criteria. The sample should be similar to the source image
when t = 0, and the sample should be similar to the target image when t = 1. The sampled
images of GSM model when t = 0.05 and t = 0.95 in Fig. 2(a) are almost the same as the
true square and circle, respectively. However, the sample image of the SGF model is far from
the source and target image when t = 0.05 and t = 0.95.

There are two issues in the SGF sampled target image: first, its background is dark; this
is caused by the Log map not being correctly calculated in Gopalan et al. [22] (as there are

1See Fig. 1 in the supplementary file for a graph of this error.
2If original data size is 400×100, we reshape it into 40000×1, which can be easily changed using the reshape

function in MATLAB.
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Algorithm 2 Classification using GSM
Input: XS,YS,XT ,YT , Sample size: N
Output: Accuracy of predictYT

1: Generate sample (St ) N times between XS
and XT using Alg. 1.

2: New_XS = X ′S ×[S0, · · · ,St , · · · ,S1]
New_XT = X ′T ×[S0, · · · ,St , · · · ,S1]

3: Train a classifier using New_XS and YS,
then predict the labels of New_XT using
trained classifier, and calculate the accuracy
of predictYT .

Figure 3: The comparison of our model
GSM and SGF. Two black points are the
given points; the solid cyan curve illustrates
the true geodesic points; the blue dashed
curve on top is the sampling results of GSM,
and the yellow lower curve is the sampling
results of SGF.

some negations of the estimated velocity v between the source image and target image). The
second is that the shape is never unified, and this is because the Exp does not approach the
target at t = 1 [22].

To validate the GSM method in the Grassmannian manifold, we test the model with two
data points and compare the results with the technique mentioned by Gopalan et al. [22].
Fig. 3 shows a good overlaying of correct geodesic points by GSM, while the geodesic curve
of SGF does not show an accurate recovery of original points.

4.2 Classification tasks

4.2.1 Dataset descriptions

We test our model using three standard public image datasets: Office10, Caltech10, Office 31
and Office-Home [41, 48, 51]. The features for Office + Caltech 10, Office 31 and Office-
Home datasets are extracted from Xception pre-trained network [11]3. These datasets are
widely used in many publications (e.g., [21, 22, 51]), and are benchmark data for evaluating
the performance of domain adaptation algorithms. We also use two additional text datasets:
20ng and S-F (student-faculty). The 20ng is newsgroups data, and we want to classify the
different categories of articles [30]. The S-F is student and faculty data, in which we want to
discriminate between student and faculty.4 Table 1 lists statistics of these datasets. We then
solve and evaluate classification tasks using Alg. 2.

Table 1: Statistics of benchmark datasets
Dataset # Samples # Features # Classes Domain(s)

Office-10 1410 1000 10 A, W, D
Caltech-10 1123 1000 10 C

Office-31 1330 1000 31 A, W, D
Office-Home 15588 1000 10 A, W, D

20ng 1952 707 2 Tr1, Te1
S-F 300 5 10 Tr2, Te2

3Xception is a well-trained deep neural network using Imagenet datasets.
4https://github.com/heaventian93/Data
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Table 2: Accuracy and timing of three manifolds
Sphere Kendall Grassmannian

Task accuracy time accuracy time accuracy time
C 95.8% 4.8s 95.5% 5.4s 95.5% 5.0s
A 97.0% 3.6s 97.0% 3.8s 96.9% 4.2s
W 99.7% 1.8s 99.3% 1.9s 99.3% 2.6s
D 99.4% 1.6s 98.7% 1.8s 98.7% 2.2s

Tr1 −→ Te1 85.7% 4.4s 83.6% 6.2s 85.7% 11.6s
Tr2 −→ Te2 82.0% 0.06s 80.0% 0.07s 82.0% 0.08s

Average 93.3% 2.7s 92.4% 3.2s 93.0% 4.3s

4.2.2 Choosing a manifold

To choose the best manifold for classification tasks, we compare the accuracy and time of
three manifolds. The sample size N = 200, and the dimensionality d = 20 (for S-F dataset,
d = 4). For the Office + Caltech 10 dataset, we choose the best manifold based on the mean of
ten-fold cross validation, and we learn from existing domain training (Tr1(2)), and transferring
knowledge to classify domain testing (Te1(2)) in 20ng and S-F datasets. As shown in Table
2, GSM using spherical manifold has the highest accuracy, and minimum computation time.
Therefore, the spherical manifold appears suitable for the classification problem, and this
conclusion is different from previous work [21, 22], which only considered the Grassmannian
manifold.

4.2.3 Comparison to state-of-the-art methods

Figure 4: t-SNE view of four domains
in Office + Caltech 10 dataset

Take the conclusions from Section 4.2.2: the spher-
ical manifold is suitable for classification problems.
In Tables 3 and 5 (full tables are provided in the
supplementary file), we compare the performance
of our GSM models with 21 state-of-the-art (both
traditional and deep learning) methods: Transfer
Component Analysis (TCA) [38]; Global and Lo-
cal Metrics for Domain Adaptation (IGLDA also
called ITCA) [25]; Semi-supervised TCA (SSTCA)
[38]; Transfer Joint Matching (TJM) [32]; Balanced
distribution adaptation (BDA) [50]; Joint distribu-
tion alignment (JDA) [31]; Support Vector Ma-
chine (SVM) [5]; Geodesic Flow Kernel (GFK)
[21]; Manifold Embedded Distribution Alignment
(MEDA) [51]; AlexNet [28]; VGG-16 [43]; ResNet-50 [24]; Deep Adaptation Networks
(DAN) [33]; Deep Domain Confusion (DDC) [46]; Deep Correlation Alignment (DCORAL)
[44]; Adversarial Discriminative Domain Adaptation (ADDA) [47]; Collaborative Adversarial
Network (CAN) [54], Join discriminative Domain Adaptation (JDDA) [10]; Joint Adaptation
Networks (JAN) [35]; Residual Transfer Networks (RTN) [34]; Domain Adaptive Neural
Networks (DANN) [20]; Domain Adaptive Hashing (DAH) [48]; Minimum Discrepancy
Deep Adaptation (MDDA) [40]; and Conditional Domain Adversarial Networks (CDAN-RM,
CDAN-M) [36]. Results for all traditional methods utilize the same features, which are
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extracted from the pre-trained Xception neural network.
We combine our GSM model with MEDA model (details are provided in the supplemen-

tary file). We first learn the underlying geometry using GSM instead of GFK model (which
was used in original MEDA model), then we solve the classification problem using the MEDA
model. In Tables 3, 4 and 5 it is clear that our GSM model has higher average accuracy than
other methods.

Table 3: Accuracy (%) on Office + Caltech 10 datasets
Task C � A C � W C � D A � C A � W A � D W � C W � A W � D D � C D � A D � W Average

TCA [38] 77.0 80.7 84.7 82.2 68.1 72.6 79.3 86.4 88.5 82.2 86.4 84.7 81.1
ITCA [25] 81.0 65.8 79.6 82.9 70.8 79.0 78.2 85.5 92.4 77.9 82.5 90.5 80.5

SSTCA [38] 79.6 70.5 80.9 76.5 72.5 83.4 69.9 79.5 90.4 78.7 85.2 87.8 79.6
TJM [32] 86.7 84.7 86.0 82.8 78.3 86.0 82.0 86.0 100 83.8 89.6 99.3 87.1
BDA [50] 89.5 78.6 81.5 79.6 73.2 84.7 78.1 83.3 100 79.7 88.5 98.6 84.6
JDA [31] 88.4 84.4 85.4 81.6 80.7 81.5 82.2 89.8 100 86.0 91.5 99.3 87.6
SVM [5] 91.0 78.0 85.4 83.3 72.5 83.4 62.9 72.1 99.4 65.0 78.2 96.6 80.7

GFK [21] 88.8 77.3 86.0 77.4 66.8 79.0 72.0 76.5 100 75.5 84.7 99.0 81.9
MEDA [51] 93.0 91.2 89.8 89.0 90.8 88.5 89.0 92.2 99.4 88.6 93.2 98.6 91.9

AlexNet [28] 91.9 83.7 87.1 83.0 79.5 87.4 73.0 83.8 100 79.0 87.1 97.7 86.1
DAN [33] 92.0 90.6 89.3 84.1 91.8 91.7 81.2 92.1 100 80.3 90.0 98.5 90.1
DDC [46] 91.9 85.4 88.8 85.0 86.1 89.0 78.0 83.8 100 79.0 87.1 97.7 86.1

DCORAL [44] 89.8 97.3 91.0 91.9 100 90.5 83.7 81.5 90.1 88.6 80.1 92.3 89.7
RTN [34] 93.7 96.9 94.2 88.1 95.2 95.5 86.6 92.5 100 84.6 93.8 99.2 93.4

MDDA [40] 93.6 95.2 93.4 89.1 95.7 96.6 86.5 94.8 100 84.7 94.7 99.4 93.6
GSM 95.8 98.6 94.9 94.8 97.6 99.4 95.0 95.0 100 94.3 95.7 98.3 96.6

Table 4: Accuracy (%) on Office 31 datasets
Task A � W A � D W � A W � D D � A D � W Average

TCA [38] 82.6 84.1 69.1 99.6 66.1 97.0 83.1
ITCA [25] 81.0 78.7 68.9 99.6 66.6 97.4 82.0

MEDA [51] 83.3 83.3 66.2 96.0 66.7 91.7 81.2
DAN [33] 80.5 78.6 62.8 99.6 63.6 97.1 80.4
RTN [34] 84.5 77.5 64.8 99.4 66.2 96.8 81.6

DANN [20] 82.0 79.7 67.4 99.1 68.2 96.8 81.6
ADDA [47] 86.2 77.8 68.9 98.4 69.5 96.2 82.9

CAN [54] 81.5 65.9 98.2 85.5 99.7 63.4 82.4
JDDA [10] 82.6 79.8 66.7 99.7 57.4 95.2 80.2

JAN [35] 85.4 84.7 70.0 99.8 68.6 97.4 84.3
GSM 92.5 91.6 76.1 100 77.7 98.1 89.3

Table 5: Accuracy (%) on Office-Home datasets
Task A � C A � P A � R C � A C � P C � R P � A P � C P � R R � A R � C R � P Ave.

AlexNet [28] 26.4 32.6 41.3 22.1 41.7 42.1 20.5 20.3 51.1 31.0 27.9 54.9 34.3
VGG16 [43] 30.4 45.9 57.5 35.4 48.7 50.8 35.8 30.5 60.2 49.6 34.5 64.0 45.3

DCORAL [44] 32.2 40.5 54.5 31.5 45.8 47.3 30.0 32.3 55.3 44.7 42.8 59.4 42.8
RTN [34] 31.3 40.2 54.6 32.5 46.6 48.3 28.2 32.9 56.4 45.5 44.8 61.3 43.5
DAH [48] 31.6 40.8 51.7 34.7 51.9 52.8 29.9 39.6 60.7 45.0 45.1 62.5 45.5

MDDA [40] 35.2 44.4 57.2 36.8 52.5 53.7 34.8 37.2 62.2 50.0 46.3 66.1 48.0
ResNet-50 [24] 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1

DAN [33] 43.6 57.0 67.9 45.8 56.5 60.4 44.0 43.6 67.7 63.1 51.5 74.3 56.3
DANN [20] 45.6 59.3 70.1 47.0 58.5 60.9 46.1 43.7 68.5 63.2 51.8 76.8 57.6

JAN [35] 45.9 61.2 68.9 50.4 59.7 61.0 45.8 43.4 70.3 63.9 52.4 76.8 58.3
CDAN-RM [36] 49.2 64.8 72.9 53.8 62.4 62.9 49.8 48.8 71.5 65.8 56.4 79.2 61.5

CDAN-M [36] 50.6 65.9 73.4 55.7 62.7 64.2 51.8 49.1 74.5 68.2 56.9 80.7 62.8
GSM 55.0 80.6 82.1 66.6 81.5 80.1 68.0 54.0 81.9 70.6 57.8 83.6 71.8
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5 Discussion

One obvious advantage of the GSM model is that it can generate more samples which follow
the constraints of their manifold geometry. Unlike the model of Gong et al. [21], we use
a different calculation of the Grassmannian manifold, and we can see that the estimated
geodesic of our model can recover the ground truth geodesic. In contrast, the sampling results
of Gopalan et al. [22] are far from the true ones. Furthermore, from image classification
results, we also find that in almost all tested tasks, our model has higher accuracy than
other methods. However, a disadvantage of our approach is that input data needs to be
normalized, which can cause some information loss, although it might not lose the most
critical information.

The spherical GSM model has lower computation time than the other two manifolds across
all classification tasks as seen in Table 2. Kendall’s manifold has a similar computation time
as the spherical manifold, while Grassmannian manifold needs a longer computation time. As
described in Sections 3.3-3.5, for Kendall’s manifold, only Log map requires the singular value
decomposition; while both Log map and Exp map require SVD for Grassmannian manifolds.
The singular value decomposition (SVD) has time complexity of O(n3). Thus, when n is
large, it will have significant computational cost (as demonstrated by the computation time
of Tr1 −→ Te1 of Grassmannian GSM in Table 2). Although the classification results of
Grassmannian and Kendall’s manifold are similar to the spherical manifold, it is undesirable
to choose Grassmannian and Kendall’s GSM to solve classification problem if n is large.

One interesting phenomenon is that although the sampling results of Gopalan et al. [22]
do not follow the rule of the geometry of the manifold, their approach still gets reasonable
results. One reason is that it uses a kernel trick so that it can represent the data in some sense,
and generate better results than other methods. We also observe that the performance of GSM
model is not always better than other methods (e.g., the D −→W task), and this variation is
caused by the differences across specific domain tasks.

6 Conclusion

In this paper, we propose a geodesic sampling model for different manifolds (Sphere, Kendall’s
shape and Grassmannian). To validate our model, we first compare geodesic curve recovery
of our model and original model of Gopalan et al. [22]. Further, to improve classification
accuracy, we choose the spherical manifold and combine distribution alignment leading to the
GSM model. The extensive experiments demonstrate that our GSM model outperforms other
models and does so efficiently.

There are some obvious next steps. Exp and Log maps can be developed for additional
manifolds, and tested on a broader set of supervised learning tasks. This method should also
be of value to unbalanced classification tasks in which lots of unlabelled data are available.
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