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Abstract—Deep neural networks have been widely used in
computer vision. There are several well trained deep neural
networks for the ImageNet classification challenge, which has
played a significant role in image recognition. However, little
work has explored pre-trained neural networks for image
recognition in domain adaption. In this paper, we are the
first to extract better-represented features from a pre-trained
Inception ResNet model for domain adaptation. We then
present a modified distribution alignment method for classi-
fication using the extracted features. We test our model using
three benchmark datasets (Office+Caltech-10, Office-31 and
Office-Home). Extensive experiments demonstrate significant
improvements (4.8%, 5.5%, and 10%) in classification accuracy
over the state-of-the-art.

Keywords-Domain Adaptation; Pre-trained Inception
ResNet; Distribution Alignment;

I. INTRODUCTION

With the rapid development of social media and content
sharing applications, data grows much faster than we can
make sense of it. There is great demand for automatic
classification and analysis for text, images, and other
multimedia data [1]. However, it is time-consuming and
expensive to acquire enough labeled data to train models.
Therefore, it is valuable to learn a model for a new target
domain from a different domain with abundant labeled
samples. Mechanisms for learning feature representations of
a continuous intermediate space from one domain to another
has been widely used in many fields such as machine learning
[2], language processing [3], and computer vision [4]. There
are several techniques to address this problem; a prominent
one is domain adaption [5], [6], [7]. There have been efforts
for both semi-supervised [8], [9], [10] and unsupervised [11],
[12], [13] domain adaptation. In the first case, the target
domain contains a small amount of labeled data; for the
latter case, the target domain is entirely unlabeled. Usually
the labeled target data alone is insufficient to construct a
good classifier. Thus, how to effectively leverage sufficient
label source data to facilitate unlabeled target data is key to
domain adaptation.

However, a critical challenge remains: to find and identify
useful features that span the representations of two domains.

The quality of such features will directly affect classification
accuracy. We cannot expect to train a high-quality classifier
if the learned features are poor. Therefore, it is essential to
find a proper way to represent the source and target data.

One useful working model for feature representation is
based on manifold learning, which learns the intermediate
features between the source and the target domain via
a Grassmannian manifold. Gopalan et al. [4] proposed a
sampling geodesic flow (SGF) method to learn the inter-
mediate features between the source and the target domain
via the geodesic (shortest path) on Grassmannian manifold.
However, Gong et al. [5] have noted that it is difficult to
choose an optimal sampling strategy. Moreover, SGF has
high time complexity making sampling slow when many
points are needed. Gong et al. [5] proposed a geodesic flow
kernel (GFK) model to overcome the limitations of unknown
sampling size in SGF. They integrated all samples along the
“geodesic”, which is calculated from Gopalan et al. [4]. We
show that the “geodesic” is not the true geodesic. Several
works have addressed the alignment of marginal distribution
and conditional distribution of data in domain adaption. Wang
and Mahadevan aligned the source and target domain by
preserving the neighborhood structure of the data points [14].
Wang et al. proposed a manifold embedding distribution
alignment method (based on work of Gong et al. [5]) to
align both the degenerate feature transformation and the
unevaluated distributions of both domains [15]. However,
none of these models explore the quality of the learned
features.

Deep learning models are also widely applied to domain
adaptation [7], [16], [17], [18], [19], [20], [21], [20]. Stacked
Denoising Autoencoders is one of the first deep models for
domain adaptation, and aims to find the common features
between the source and target domain via denoising autoen-
coders [22]. The deep neural network for domain adaptation
can be majorly classified in four types: discrepancy-based
methods, adversarial discriminative models, adversarial gen-
erative models, and data reconstruction-based models. One
of the first discrepancy-based methods is Deep Domain Con-
fusion (DDC), which considers the discrepancy in different
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layers and the network is fine-tuned based on maximum mean
discrepancy (MMD) [7]. Later Long et al. [23] proposed
a Deep Adaptation Network (DAN) that considered the
sum of MMD from several layers with several kernels
of MMD functions. The Domain adaptive neural network
also embedded MMD as a regularization [24]. Adversarial
discriminative based models aim to define a domain confusion
objective to identify the domains via a domain discriminator.
The Domain-Adversarial Neural Networks (DANN) consider
a minimax loss to integrate a gradient reversal layer to
promote the discrimination of source and target domain [25].
The Adversarial Discriminative Domain Adaptation (ADDA)
uses an inverted label GAN loss to split the source and target
domain, and features can be learned separately [17]. The
adversarial generative models combine the discriminative
model with generative components based on Generative
Adversarial Networks (GANs) [26]. The Coupled Generative
Adversarial Networks [27] consists of a series of GANs,
and each of them can represent one of the domains. Data
reconstruction-based methods jointly learn source label
predictions and unsupervised target data reconstruction [28].

However, training of deep neural networks consume time
and require much effort to tune the parameters. We are in-
spired by Zhang et al. [29], which extracted features from the
well-trained Alexnet, and then trained an SVM using the deep
features to facilitate improvements in classification accuracy.
Also, other work indicated that the features extracted from
the activation layers of a well-trained deep neural network
could be re-used for different tasks even when the new tasks
are different from the original tasks used to train the model
[30].

In this paper, we first extract features from a well-trained
Inception ResNet-v2 (IR) model; we then classify these
features based on a modified distribution alignment. Our
contributions are three-fold:

1) We create three datasets for domain adaptation based
on better extracted features, which can be of significant
value in future research for the community.

2) We show the shortcomings of the original manifold
embedded distribution alignment method, and propose
a modified distribution alignment for classification,
which enhances the accuracy for classification.

3) We test these improvements using three benchmark
datasets. Extensive experiments demonstrate significant
improvements (4.8%, 5.5%, and 10%) in classification
accuracy over the state-of-the-art.

II. PROBLEM STATEMENT

To avoid the complex and time-consuming process of hand-
tuning parameters for training a deep neural network, we
present the extraction of features from a well-trained deep
neural network, so that we are able to learn a better feature
representation of source and target domain data. Also, we

Figure 1: The scheme of MDAIR model. 1) We first extract
the feature from the last fully connected layer in Inception-
ResNet-v2 model. The learned features are slightly more
aligned than the raw features; 2) We then align the distribution
of learned features.

want to further align the distribution from both source and
target domain.

Given training data (source domain): XS , with its labels
YS = {yi}N1

i=1 ∈ {1, 2, 3, · · · , C}, denoting the C categories,
and the test data (target domain): XT with its labels YT =
{yi}N2

i=1 ∈ {1, 2, 3, · · · , C} and N2 ≤ N1, that implies that
we might not have all labels for testing data. If N2 = N1,
which means we have sufficient labels for XT , we aim to get
a higher predictive accuracy. If N2 < N1, we not only want
to get a high enough predictive accuracy, but also to predict
the labels for the unlabeled data. We have two concerns: 1)
how to generate better source XS and target XT features for
the image recognition problem; 2) how to improve prediction
accuracy using the features of step 1.

III. METHOD

A. Feature Extraction

Feature extraction is a relatively easy and fast way to take
advantage of deep learning without investing time and much
effort into training a full neural network. Feature extraction
will be especially useful if we do not use GPUs since it only
requires a single pass over the input images. Kornblith et al.
indicated that ResNets are often the best feature extractors,
independently of their ImageNet accuracies [31]. In this paper,
we use Inception-ResNet-v2 as the pre-trained model from
which to extract features. Inception-ResNet-v2 is a powerful
convolution neural network, which is trained on more than
one million images from the ImageNet datasets. This network
consists of 164 layers (the largest number of convolutional
and fully connected layers from the input layer to the output
layer). IR model can predict 1000 categories of images,
such as cup, smart phone, backpack, and many animals.
Therefore, IR model has learned rich feature representations
with a wide range of images. The image input size of IR
model is 299-by-299-by-3. Please refer to [32] for details of
Inception-ResNet-v2 model.

As shown in Fig. 2, we compare the number of parameters
and top-1 accuracy of several well-trained deep neural



networks (SqueezeNet [33] , AlexNet [34], VGG16 [35],
VGG19 [35], GoogLeNet [36], ResNet18 [37], ResNet50,
ResNet101, ResNet152 [37], DenseNet201 [38], Inceptionv3
[39], Inception-Resent-V2 [32]). There are two essential
reasons why we choose the IR model as the deep neural
network to extract features. First, the top-1 accuracy of
Inception-ResNet-v2 model is higher than other models.
Secondly, the IR model uses fewer parameters compared
with several lower accuracy networks (e.g. VGG-16).

We assume that extracted features from the IR model
contain more detailed information than other features, which
will enable a classifier to achieve higher accuracy. We then
compare extracted IR features with three commonly used sets
of features (SURF, Resnet-50, and DeCAF), which is shown
in Sec. IV-B. In addition, the extracted features from different
layers will have different effects on final recognition results,
which is also shown in Sec. IV-B. Fig. 3 is an example of
extracting features using the well-trained Inception-ResNet-
v2 model. The left of Fig. 3a is the input image, Fig. 3b is
the extracted features from the first conventional layer in the
IR model; the right of Fig. 3a is strongest channel feature
in Fig. 3b; and Fig. 3c is extracted feature from last fully
connected layer. Alg. 1 describes the procedures of extracting
features from the pre-trained IR model.

Figure 2: The top 1 accuracy and number of parameters of
different pre-trained deep neural networks.

Algorithm 1 Extracting features from IR model
Input: Raw images and pre-trained Inception-ResNet-v2 model
Output: Extracted features from IR model

1: Prepare the images (rescale the size of images to be 299 ×
299× 3)

2: Select one layer to extract features
3: Apply the raw features of a datapoint as input, and use activation

functions to extract the feature using IR model in the selected
layer

B. Distribution Alignment

To train a robust classifier for features, which were
extracted in the previous section, we perform dynamic
distribution alignment to quantitatively account for the
relative importance of marginal and conditional distribution to
address the challenge of unevaluated distribution alignment.

Manifold Embedded Distribution Alignment (MEDA) is
proposed by Wang et al. [15] to align learned features from
manifold learning. It has three fundamental steps: 1) learn
features from the manifold based on Gong et al. [5]; 2) use
dynamic distribution alignment to estimate the marginal and
conditional distributions of data; and, 3) update the classified
labels based on estimated parameters. Please refer to Wang
et al. [15] for more details. The classifier (fr) is defined as:

fr = argmin
fr∈Hk

N1∑
i=1

l(fr(g(XSi
)), YSi

) + η||fr||2K

+ λDfr(XS , XT ) + ρRfr(Xs, XT )

(1)

where Hk represents kernel Hilbert space; l(·, ·) is the loss
function; g(·) is a feature learning function in Grassmannian
manifold [5]; XS is the learned features from IR model,
||fr||2K is the squared norm of fr; Dfr(·, ·) represents
the dynamic distribution alignment; Rfr(·, ·) is a Laplacian
regularization; η, λ, and ρ are regularization parameters. Here,
the term argminfr∈Hk

∑N1

i=1 l(fr(g(XSi)), YSi)+η||fr||2K
is the structure risk minimization (SRM). We can only employ
the SRM on XS , since there are few labels (perhaps no labels)
for XT . By training the classifier from Eq. 1, we can predict
labels of test data.

C. Weaknesses of MEDA

The first step of the MEDA method is learning the kernel
mapping g(·) from Grassmannian manifold based on GFK
model. However, the calculation of “geodesic” in GFK model
is originally from SGF method, which is a unevaluated
geodesic [4]. Then GFk considered all samples points on
“geodesic” for constructing a kernel function. It is a “kernel
trick”; but it cannot maintain the true information from a
manifold since geodesic is not correctly estimated. We design
two experiments to show the defects of GFK.

Given two points P1 and P2 on the sphere, we want to
recover all other points between them. As shown in Figure 4,
sampled points of the SGF method (yellow curve is not
able to recover the true points on a geodesic (cyan curve).
Therefore, the GFK model will lose feature information if it
integrates all pseudo samples from wrong geodesic (yellow
curve), which is calculated using the SGF method.

We design another experiment to show shape deformation
using SGF model. As shown in Fig. 5, the source image is
a square (the leftmost of Fig. 5a), and the target image is a
circle (the rightmost of Fig. 5a). The progress of sampled
images of the SGF model are shown in Fig. 5b. To evaluate



(a) Original image and strongest channel (b) The activation of first convolutional layer (c) Final extracted feature

Figure 3: Original image and extracted features of first convolutional layer in Inception-ResNet-V2 model.

Figure 4: The comparison of SGF samples and ground
truth. Two black points are the given points; the cyan curve
highlights the true geodesic points; the yellow curve is the
sampling results of SGF. Sampled points are away from the
true geodesic in SGF model.

the quality of samples, there are two criteria. The sample
should be similar to the source image when t = 0, and the
sample should be similar to the target image when t = 1.
However, the sampled images of SGF model are far from
the source and target images when t = 0.05 and t = 0.95,
respectively.

There are two issues in the sampled images of the SGF
method: first, its background is dark; this is caused by the
Log map not being correctly calculated in Gopalan et al. [4]
(there are some negations of the estimated velocity v between
the source image and target image). The second is that the
shape is never unified, and this is caused by the Exp does
not approach the target at t = 1 [4].

The second shortcoming of GFK is that the dimensionality
is difficult to determine. The first step of GFK is to project
the original source and target data into a subspace since
the number of instances in the original space is not the
same (N2 ≤ N1). The reduced dimensionality will lead to
information loss of original data.

D. Modified Distribution Alignment

To resolve the issues mentioned above, we use the original
features instead of features from the GFK model. These
are two essential reasons: 1) we want to maintain the

(a) The progress of true samples

(b) The progress of SGF samples

Figure 5: The comparison of sampling results between the
two images (square and circle) with t = 0, 0.05, 0.5, 0.95, 1.
Obviously, the SGF model does not generate a correct sample
in (b). For reference, the source image is the far left at t = 0
and the target image is far away at t = 1 in Fig. 5a.

information of original features, and we want to avoid the
undetermined dimensionality in the GFK model; 2) the
extracted IR features contain enough detailed information for
the classification problem1. Therefore, we have the following
objective function:

f = argmin
f∈Hk

N1∑
i=1

l(f(XSi), YSi) + η||f ||2K

+ λDfr(XS , XT ) + ρRf (Xs, XT )

(2)

We only need to replace the manifold learning feature Z
in line 1 of Alg.1 in Wang et al. [15] with our extracted IR
features to get the modified distribution alignment model.

IV. RESULTS

A. Description of Datasets

In this experiment, we show how our MDAIR method
can enhance image recognition accuracy. We test our model
using three public image datasets: Office+Caltech-10 (we
combine Office-10 and Caltech-10 as one dataset), Office-
31, and Office-Home [40], [15], [41]. These datasets are
widely used in many publications [4], [5], [15], and are
the benchmarking data for evaluating the performance of

1Source code is available at: https://github.com/heaventian93/MDAIR.

https://github.com/heaventian93/MDAIR


(a) Office+Caltech-10 (b) Office-31 (c) Office-Home

Figure 6: Some example images from three benchmark datasets. (a) is from the DSLR domain in Office+Caltech-10 dataset;
(b) is from the Amazon domain in Office-31 dataset, and (c) is from Art domain in Office-Home dataset.

domain adaptation algorithms. Table I lists the statistics of
these datasets. In the Office+Caltech-10 datasets and Office-
31 dataset, there are totally four domains (A, W, C, and
D) where A represents Amazon, W represents Webcam, C
represents Caltech and D represents DSLR. In the Office-
Home dataset, A represents Arts, C represents Clipart, P
represents Product and R represents Real world. C � A
means learning from existing domain C, and transferring
knowledge to classify domain A.

Table I: Statistics of extracted IR features for four benchmark
datasets

Dataset # Sample # Feature # Class Domain(s)
Office-10 1410 1000 10 A, W, D

Caltech-10 1123 1000 10 C
Office-31 1330 1000 31 A, W, D

Office-Home 15588 1000 65 A, C, P, R

Fig. 6 shows example images from three benchmark
datasets. Amazon and Caltech images are mostly from online
merchants, while DSLR and Webcam images are mostly from
offices [5]. We also combine Office-10 and Caltech-10 to be
one dataset, and we perform twelve tasks in this dataset: C
� A, C � W, · · · , D � W. In Office-31 dataset, we have
another six tasks: A � W, A � D, · · · , D � W. For Office-
Home datasets, we have another twelve tasks: A � C, A �
P, · · · , R � P. Therefore, we have a total of 30 tasks in our
experiment.

Table II: Statistics of extracted IR features from different
layers.

Layers Last average pooling Last fully connected Classification
# Feature 1536 1000 1000

Figure 7: Differences in accuracy of extracted features three
layers (average pooling, fully connected, and classification)
for the Office+Caltech-10 dataset tasks, where the baseline
is the fully connected layer. The accuracy from the fully
connected layer is better than other layers—all accuracies
from the classification layer are below the fully connected
layer, and most accuracies of the average pooling layer
are below the fully connected layer. Therefore, we suggest
extracting features from the last fully connected layer.

B. Feature Comparison

To determine the best layer for feature extraction, we
first explore the effect of different layers in final accuracy.
We list the number of features from three layers in Tab. II.
Based on an experiment using the Office+Caltech-10 dataset,
we choose the optimal layer. Fig. 7 shows the accuracy of
different tasks from different layers. Accuracy from the fully
connected layer is typically higher than the other two layers.



Table III: Accuracy (%) on Office + Caltech-10 datasets

Task C � A C � W C � D A � C A � W A � D W � C W � A W � D D � C D � A D � W Average
TCA 77 80.7 84.7 82.2 68.1 72.6 79.3 86.4 88.5 82.2 86.4 84.7 81.1
ITCA 81 65.8 79.6 82.9 70.8 79 78.2 85.5 92.4 77.9 82.5 90.5 80.5

SSTCA 79.6 70.5 80.9 76.5 72.5 83.4 69.9 79.5 90.4 78.7 85.2 87.8 79.6
TJM 86.7 84.7 86 82.8 78.3 86 82 86 100 83.8 89.6 99.3 87.1
BDA 89.5 78.6 81.5 79.6 73.2 84.7 78.1 83.3 100 79.7 88.5 98.6 84.6
JDA 88.4 84.4 85.4 81.6 80.7 81.5 82.2 89.8 100 86 91.5 99.3 87.6
SVM 91 78 85.4 83.3 72.5 83.4 62.9 72.1 99.4 65 78.2 96.6 80.7
GFK 88.8 77.3 86 77.4 66.8 79 72 76.5 100 75.5 84.7 99 81.9
JGSA 91.4 86.8 93.6 84.9 81.0 88.5 85.0 90.7 100 86.2 92.0 99.7 90.0
ARTL 92.4 87.8 86.6 87.4 88.5 85.4 88.2 92.3 100 87.3 92.7 100 90.7
MEDA 93 91.2 89.8 89 90.8 88.5 89 92.2 99.4 88.6 93.2 98.6 91.9
AlexNet 91.9 83.7 87.1 83 79.5 87.4 73 83.8 100 79 87.1 97.7 86.1

DAN 92 90.6 89.3 84.1 91.8 91.7 81.2 92.1 100 80.3 90 98.5 90.1
DDC 91.9 85.4 88.8 85 86.1 89 78 83.8 100 79 87.1 97.7 86.1

DCORAL 89.8 97.3 91 91.9 100 90.5 83.7 81.5 90.1 88.6 80.1 92.3 89.7
MEDA-IR 96.2 95.9 96.2 95.2 98 96.8 94.5 96.2 99.4 93.8 95.5 98.6 96.4

MDAIR 96.1 94.9 96.2 94.2 98.6 100 94.9 96.3 100 94.2 95.8 98.6 96.7

Table IV: Accuracy (%) on Office-31 datasets

Task TCA SSTCA MEDA DAN RTN DANN ADDA CAN JDDA JAN MEDA-IR MDAIR
A � W 82.6 81 83.3 80.5 84.5 82 86.2 81.5 82.6 85.4 90.8 94
A � D 84.1 78.7 83.3 78.6 77.5 79.7 77.8 65.9 79.8 84.7 91.4 92.6
W � A 69.1 68.9 66.2 62.8 64.8 67.4 68.9 98.2 66.7 70.0 74.6 77.6
W � D 99.6 99.6 96 99.6 99.4 99.1 98.4 85.5 99.7 99.8 97.2 99.2
D � A 66.1 66.6 66.7 63.6 66.2 68.2 69.5 99.7 57.4 68.6 75.4 78.7
D � W 97 97.4 91.7 97.1 96.8 96.9 96.2 63.4 95.2 97.4 96 96.9
Average 83.1 82.0 81.2 80.4 81.6 82.2 82.9 82.4 80.2 84.3 87.5 89.8

Table V: Accuracy (%) on Office-Home datasets

Task A � C A � P A � R C � A C � P C � R P � A P � C P � R R � A R � C R � P Average
AlexNet 26.4 32.6 41.3 22.1 41.7 42.1 20.5 20.3 51.1 31 27.9 54.9 34.3
VGG16 30.4 45.9 57.5 35.4 48.7 50.8 35.8 30.5 60.2 49.6 34.5 64.0 45.3

D-CORAL 32.2 40.5 54.5 31.5 45.8 47.3 30.0 32.3 55.3 44.7 42.8 59.4 42.8
RTN 31.3 40.2 54.6 32.5 46.6 48.3 28.2 32.9 56.4 45.5 44.8 61.3 43.5
DAH 31.6 40.8 51.7 34.7 51.9 52.8 29.9 39.6 60.7 45.0 45.1 62.5 45.5

MDDA 35.2 44.4 57.2 36.8 52.5 53.7 34.8 37.2 62.2 50.0 46.3 66.1 48.0
ResNet-50 34.9 50 58 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1

DAN 43.6 57 67.9 45.8 56.5 60.4 44 43.6 67.7 63.1 51.5 74.3 56.3
DANN 45.6 59.3 70.1 47 58.5 60.9 46.1 43.7 68.5 63.2 51.8 76.8 57.6

JAN 45.9 61.2 68.9 50.4 59.7 61 45.8 43.4 70.3 63.9 52.4 76.8 58.3
CDAN-RM 49.2 64.8 72.9 53.8 62.4 62.9 49.8 48.8 71.5 65.8 56.4 79.2 61.5
CDAN-M 50.6 65.9 73.4 55.7 62.7 64.2 51.8 49.1 74.5 68.2 56.9 80.7 62.8
MEDA-IR 52.9 79.3 78.9 67.3 78.8 78.8 68.2 53.4 79.8 71.8 56.3 83 70.7

MDAIR 55.6 80.4 81.6 70.2 80.7 80.8 71 55.6 82.5 73.5 57.7 83.9 72.8

Therefore, we suggest that last fully connected layer is the
best layer to extract features in domain adaption problem.

We then examine the quality of our IR features in the last
fully connected layer. We visualize the three domains from
three datasets using the t-SNE technique. T-SNE (t-distributed
Stochastic Neighbor Embedding) [42] is an algorithm for
visualizing high-dimensional data by re-representing it in a
lower dimensional space. t-SNE generates a low-dimensional
representation in which points near each other are similar
in the high-dimensional space and vice versa. The better
that clusters are separated in the t-SNE view, the better the
extracted features are likely to be. The loss function of the t-

SNE method is Kullback-Leibler divergence, which measures
the difference between the two distributions [42]. Typically,
lower losses correspond to better features.

As shown in Fig. 8, our extracted IR features produce better
clearer and better separated clusters than SURF, DeCAF, and
Resnet-50 features. Therefore, we can assume that our IR
features will lead to better classification result than the others.
Similarly, the visualizations based on our IR features have
the lowest loss values.



Figure 8: The t-SNE view of the comparison of our IR
features (a, d and g) with DeCAF (b and e), Resnet-50
(h), and SURF features (c and f). Different color means
different classes. The first row is from DSLR domain in
Office+Caltech-10 datasets, and the second row is from the
Webcam domain in the Office-31 dataset, and (g) and (h) are
from the Art domain in Office-Home dataset.

C. Comparison to State-of-the-art Methods

We compare the performance of our MDAIR model
with 25 state-of-the-art (both traditional and deep learning)
methods: Transfer Component Analysis (TCA) [8]; Global
and Local Metrics for Domain Adaptation (IGLDA also
called ITCA) [19]; Semi-supervised TCA (SSTCA) [8];
Transfer Joint Matching (TJM) [43]; Balanced distribution
adaptation (BDA) [44]; Joint distribution alignment (JDA) [6];
Support Vector Machine (SVM) [10]; Geodesic Flow Kernel
(GFK) [5]; Adaptation Regularization (ARTL) [45]; Joint
Geometrical and Statistical Alignment (JGSA) [46]; Manifold
Embedded Distribution Alignment (MEDA) [15]; AlexNet
[34]; VGG-16 [35]; Deep Adaptation Networks (DAN)
[23]; Deep Domain Confusion (DDC) [7]; Deep Correlation
Alignment (DCORAL) [16]; Joint Adaptation Networks
(JAN) [18]; Residual Transfer Networks (RTN) [47]; Domain
Adaptive Neural Networks (DANN) [48]; Domain Adaptive
Hashing (DAH) [49]; Minimum Discrepancy Deep Adap-
tation (MDDA) [41]; Adversarial Discriminative Domain
Adaptation (ADDA) [17]; Collaborative Adversarial Network
(CAN) [21], Joint Discriminative Domain Adaptation (JDDA)
[20], and Conditional Domain Adversarial Networks (CDAN-
RM, CDAN-M) [50].

From Tables III, IV and V, we can observe that the
accuracy of MDAIR model is ahead of all other methods
in most tasks (23/30). Notably, our model always achieves
the best performance in Office-Home dataset. Regarding all
three datasets, the overall average performance is significantly

Figure 9: T-SNE view of the comparison of baseline
methods and the proposed MDAIR model in the A � D
in Office+Caltech-10 dataset. The proposed MDAIR model
has the highest accuracy, while all other methods have some
mixed colors, which implied the classes are wrongly classified
(as colors correspond to labels).

improved over the best state-of-the-art baseline methods. The
results of using SURF feature are too low to compare with
DeCAF and IR features and are omitted.

To illustrate the effectiveness of our model, we consider
the case in which all models use our IR features, and view
the prediction results using t-SNE. Focusing on the A�D
task in which the accuracy of our MDAIR is 100% (and
thus identical to ground truth), Fig. 9 shows that all other
conventional methods contained mixed colors in the t-SNE
view. These results indicate that our modified distribution
alignment is better than several baseline methods even using
the same features. In addition, we test our IR features using
the original MEDA method (MEDA-IR in Tables III, IV
and V); results still turn out that our modified distribution
alignment is better than the previous MEDA model.

D. Parameter Settings

In our experiments, the optimal parameters for different
tasks might be different. To more easily reproduce our results,
we use consistent parameters: λ = 10, ρ = 1.0, p = 10, and
η = 0.1.

V. DISCUSSION

We list the improvement of our model based on the
best state-of-the-art methods in Table VI. For three datasets
(Office+Caltech-10, Office-31, and Office-Home), our method
improves the absolute accuracy by 4.8%, 5.5%, and 10%
respectively. Therefore, the quality of our model exceeds that
of all the state-of-the-art methods.



Table VI: Comparison of average accuracy of the best baseline
method and our MDAIR model

Task Best baseline MDAIR Improvement
Office+Caltech-10 91.9 96.7 4.8%

Office-31 84.3 89.8 5.5%
Office-Home 62.8 72.8 10%

There are two prominent reasons for the success of our
model. First of all, our model takes advantage of deep features
from the Inception-ResNet-v2 model, which produces better
features than SURF and DeCAF features. And better features
reduce the difference between the source and target domains.
Secondly, the modified distribution alignment facilitate the
alignment of the distribution of features which leads to higher
accuracy.

In addition, our experiments imply that the last fully
connected layer is the best layer for feature extraction. A
likely reason is that the layer collects all features from the
previous layer; hence it will form better features than previous
layer. Although the last classification layer can be used for
feature extraction from the IR model, the performance is
worse than the last fully connected layer since features from
classification layer will be affected by original trained classes.
We observe that our model is compromised in some tasks (A
� W in Office+Caltech-10 and D � A in Office-31 dataset).
This caused by the intrinsic differences of various datasets,
and so we cannot guarantee that our model always beats all
other methods.

However, one shallow weakness of our model is that
feature extraction affects the results significantly. We suggest
that extracting feature from higher top-1 accuracy deep neural
networks will further improve the accuracy.

VI. CONCLUSION

In this paper, we are the first to extract features from a pre-
trained Inception-ResNet-v2 model for the domain adaption
problem. The experiment shows that the last fully connected
layer is the best layer to extract features and the extracted
features are better than DeCAF and Resnet-50 features.
The modified distribution alignment model has a better
performance than other models. We also test our model using
three benchmark datasets. Extensive experiments demonstrate
significant improvements in classification accuracy over the
state-of-the-art.

There are some obvious areas for follow-up work. Extract-
ing features from another well-trained deep neural network
might generate a better input for the modified distribution
alignment than the IR model. Testing on a broader set of
unsupervised learning tasks will improve the applicability of
our model. Also, a new distribution method will be beneficial
for increasing the predictive accuracy.
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