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Abstract: This paper deals with the problem of the electricity consumption forecasting method. A 
MPSO-BP(modified particle swarm optimization-back propagation) neural network model is 
constructed based on the history data of a mineral company of Anshan in China. The simulation 
showed that the convergence of the algorithm and forecasting accuracy using the obtained model are 
better than those of other traditional ones, such as BP,PSO, fuzzy neural network and so on. Then 
we predict the electricity consumption of each month in 2017 based on the MPSO-BP neural 
network model. 

1 Introduction   
Mineral companies consume large quantities of electricity in the processing of coal every day. 

The electricity consumption predicting system is always an important part of planning and 
operating of the power. Because of the complicated change of the electrical power system, it is 
difficult to establish an exact predicting model [1]. Many companies have changed the traditional 
methods to predict the electricity consumption, but the accuracy is not high. Traditional BP neural 
network training algorithms are mostly based on the gradient. The speed of network learning 
process convergence is slow and falls into the local minimum value easily. It is also difficult to 
decide the number of neurons in the hidden layer. In terms of the electric power loading randomness, 
it lacks the ability of precise to screen data processing. The original particle swarm optimization 
(PSO) has many advantages such as the simple algorithm, easily implement and less parameters. 
However, it has some disadvantages like is not sensitive to the environmental changes and falls into 
non-optimal regions easily [2-5]. 

In this paper, PSO-BP algorithm is modified to train the neural network parameters, realize the 
optimizing of the network and achieve the automatically optimized parameters of BP neural 
network. The algorithm is applied to predict the electricity consumption prediction by using Matlab. 
In addition, our method is used to compare with methods of BP, PSO, Elman, FNN, and 
ANFIS [6-10], the results show that our algorithm has a higher convergence speed, and it provides a 
higher accuracy for predicting the electricity consumption.  
2 Particle Swarm Optimization and Its Improvement 

2.1 The original particle swarm optimization 
 In the PSO algorithm, each individual is called a particle, and each particle represents a potential 

solution. In the D-dimensional search space, each particle is a point in space and group forms by m 
particles. zi=(zi1,zi2,…ziD) and vi=(vi1,vi2,…vid,…,viD ) are the position vector and the speed vector 
of i ( i=1,2,…,m) particle, pi=(pi1,pi2,…pid,…,piD) is the best position of the search particle, 
pg=(pg1,pg2,…pgd,…,pgD)is the best position of all particles. 
The velocity and position updating equations: 

1 ( ) (k)
1 1 2 2( - ) ( - )k k k k k

id id id id gd idv v c r p z c r p z+ = + +  (1) 

 1 1k k k
id id idz z v+ += +  (2) 

Where: k is the iteration index; r1 and r2 are random numbers among [0, 1]; c1 and c2 are the 
acceleratory coefficient [7]. 
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2.2 Modified particle swarm optimization 
Modified ideas: 1. Keeping flight diversity of later stage and different flight speed in the same 

direction. 2. Dividing particles into two categories: high-speed particles satisfy the global search 
requirements and avoid premature and local optimum; and low-speed particles satisfy the refined 
search requirements, and avoid exceeding optimal solution. The modified equations are as follows: 
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where: 0
idv（ ） is a base  part of the particle  i in D-dimensional velocity; 

( )m
idv is a  part of the particle 

i in D-dimensional search speed; (0)
idz is a base part of the particle i in D-dimension search position; 

( )m
idz  is a part of the particle i in D-dimensional search position; ω is inertia weight; Pid is the best 

position particle achieved based on its own experience; Pgd is the best particle position based on 
overall swarm’s experience. 
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a(n) is the coefficient variation of speed, Ni1 is the maximum speed, Ni2 is the minimum speed, a(n) 
changes the search speed according to the equation (4). 
 0

max( ) 2 / (1 exp( / )k k kω ω σ= +  (5) 
Where: σ is the positive coefficient; kmax is the upper limit iteration index;ω0 is the upper limit ofω
(k); k is the iteration index. 

2.3 Performance analysis after the improved algorithm 
The original PSO algorithm cannot keep the convergence of global optimum, and the probability 

of getting an optimal solution is small. The modified PSO algorithm introduces a speed variable 
coefficients a(m) and inertia factor ω. It keeps diversity of particle swarm, and it can obtain the 
global optimum and improve the convergence speed and accuracy. 
3 MPSO-BP Neural Network Algorithm 

The following equation can be used to judge the fitness of particles: 
 

1 1

1 ( - )
n m

i k
j k

f d t
n = =

= ∑∑  (6) 

where di is the actual output, tk is the target output, m is the number of output nodes, and n is the 
number of training set samples. 
3.1 Modified particle swarm optimization algorithm realization 
1. Initialization: generating the positions and velocities randomly to decide the local best position 
(pid) and the global best position (pgd). The equation (3) and (4) decide the initial parameters: 
σ,ω,ω0,c1,c2,r1,r2. 
2. Evaluation：calculating the particle fitness function f according to the equation (6)，Comparing 
the best position of each particle with the experience position of each particle, and replacing the 
current position as the best position if the current position is better than the best position, otherwise, 
the current position remains unchanged. 
3. Update extreme value: comparing the current position of each particle in the group with all the 
best position experienced. If the position of the particle is better, it will be setting to the best 
position in the current; otherwise, the position will stay unchanged. 
4. Update the inertia weight：The inertia weight is updated according to the equation (5). 
5. Update the position and velocity of the particle: the position and velocity of the particle changed 
by using equation (3) and (4). 
6. Check: If the current accuracy not achieves the preset accuracy or the number of iterations not 
meets the end conditions, turn back to step 2. [11] 
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After training the neural network, the electricity consumption can be forecasted. 
4 MPSO-BP Neural Network Predicting Model 

4.1 The prediction and simulation of electricity consumption 
According to the history data of a mineral company of Anshan in China, the training samples of 

the neural network are the monthly electricity consumption history data from 2011 to 2014. In 
addition, the electricity consumption values of 12 months in 2015 are treated as a test sample. By 
using the training MPSO-BP neural network, the initial parameters are as follows: σ= 0.8, ω=0.7, 
ω0=0.9, c1= 2 and c2= 2.4, the range of r1 and r2 is [0,1], α= 0.07,η= 0.80, M=50, the maximum 
number of iterations is 1000. Different algorithms were used to predict the electricity consumption 
of a mineral company of Anshan in 2015, the results are shown as following(Due to the length of 
the space, a part of the results are listed in Table 1)： 
 

Table 1. Energy consumption prediction of each month in 2015 
Methods MPSO-BP PSO-BP BP Elman FNN ANFIS 

Months 
True 
value 
kWh/t 

Predict 
value 
kWh/t 

Relative 
error 

% 

Predict 
Value 
kWh/t 

Relative 
error 

% 

Predict 
value 
kWh/t 

Relative 
error 

% 

Predict 
value 
kWh/t 

Relative 
error 

% 

Predict 
Value 
kWh/t 

Relative 
error 

% 

Predict 
Value 
kWh/t 

Relative 
error 

% 

1 36.82 36.18  1.739  36.08  2.000  34.90  -1.923  36.20  1.673 37.13  -0.845  36.16 1.893 
2 36.87 35.86  2.734  36.47  1.091  36.86  -0.013  35.82  2.8455 37.95  -2.941  36.38 -3.359 
3 36.84 36.49  0.947  36.22  1.691  35.96  -0.880  35.63  3.2828 36.24  1.632  36.37 -3.284 
4 35.16 36.19  -2.930  36.10  -2.673  34.15  -1.008  35.03  0.378 35.80  -1.833  34.79 1.707 

 
Table 2.  Electric energy error of each month in 2015 

Methods MPSO-BP PSO-BP BP Elman FNN ANFIS 
MSE 0.966627 1.045105 4.273972 2.297225 0.9128 0.809817 

Average relative error% 0.9993 2.2728 4.7355 2.9997 2.0883 2.883 

 
Fig. 1 Electricity consumption prediction                    Fig.2 The prediction error  

It can be seen from table 1, table 2, figure 1, and figure 2 that the predicting value of the 
electricity consumption of MPSO-BP algorithm is very close to the actual value. Therefore, this 
method has a higher accuracy than the others. Figure 3 can also show that the predicting results of 
Elman and BP algorithm are easy to appear oscillating. However, MPSO-BP predicting model has a 
fast training speed, high precision, and a good effect. The changing of relative error is also uniform, 
and the changing range is between 0% with 4.5%. 

4.2 The analysis of simulation results 
In order to evaluate the effect of MPSO-BP prediction model, PSO-BP, BP, Elman, FNN and 

ANFIS predicting models are trained and compared with the results of MPSO-BP model. The 
results are shown in Table 3: 
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Table 3 Comparison of model training performance 
Model Accuracy Iterations Average relative 

error 
Maximum relative 

error 
ANFIS 0.005 4800 2.8834% 3.7342% 
FNN 0.005 4560 2.4927% 3.1275% 

Elman 0.005 1500 3.6764% 4.4959% 
BP 0.005 2000 4.2437% 7.0630% 

PSO-BP 0.005 500 1.8223% 2.3154% 
MPSO-BP 0.005 200 0.8677% 2.0535% 

As can be seen from table 3, the error and the number of iterations of MPSO-BP neural network 
are obviously less than the traditional ANFIS, FNN, Elman, BP, and PSO-BP neural networks. 
MPSO-BP neural network has faster convergence, and higher convergence precision, so adopting 
this optimization of the calculation is feasible.  

Adopting the trained MPSO-BP neural network forecasting model, selected five months 
randomly to predict the electricity consumption, and the results shown in Table 4: 

Table 4.Electricity consumption forecasting accuracy 
time 8/2011 11/2012 12/2013 4/2014 7/2015 

Original value(kWh/t) 36.22 36.67 34.23 36.36 35.38 
Predictive value(kWh/t) 36.10 36.76 34.03 36.86 35.34 

Accuracy (%) 99.7 99.8 99.4 98.6 99.9 
It has shown from the table 4, the predicting accuracy can reach about 99%, and the highest 

predicting accuracy was 99.9%. Obviously, for multiple factors in the predicting of electricity 
consumption, such accuracy is difficult to achieve. It shows that the MPSO-BP predicting model 
can achieve high predicting accuracy and high practicality. 

4.3 The electricity consumption results 
  Based on the MPSO-BP neural network model, we predict the monthly electricity consumption 
of the mineral company in 2017, the results are: 34.52, 36.32, 35.44, 36.01, 34.96, 35.62, 37.03, 
35.15, 37.41, 35.92, 37.16, and 37.96 kWh/t.  
5 Conclusions 

In this paper, we proposed a modified PSO-BP neural network method to predict the electricity 
consumption. The MPSO-BP neural network algorithm is used to train the network, and achieve the 
optimization of BP network parameter. This algorithm analysis shows that the MPSO-BP algorithm 
overcomes problems of BP neural network and traditional particle swarm optimization algorithm. 
This improved algorithm has a good predictive ability, improves the predicting accuracy and 
provides a feasible and practical method for forecasting electricity consumption. 
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