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ABSTRACT

Domain adaptation aims to mitigate the domain gap when
transferring knowledge from an existing labeled domain to
a new domain. However, existing disentanglement-based
methods do not fully consider separation between domain-
invariant and domain-specific features, which means the
domain-invariant features are not discriminative. The recon-
structed features are also not sufficiently used during training.
In this paper, we propose a novel enhanced separable disen-
tanglement (ESD) model. We first employ a disentangler to
distill domain-invariant and domain-specific features. Then,
we apply feature separation enhancement processes to min-
imize contamination between domain-invariant and domain-
specific features. Finally, our model reconstructs complete
feature vectors, which are used for further disentanglement
during the training phase. Extensive experiments from three
benchmark datasets outperform state-of-the-art methods, es-
pecially on challenging cross-domain tasks.

Index Terms— Unsupervised domain adaptation, Disen-
tanglement, Domain discriminator

1. INTRODUCTION

Most existing machine learning models rely on large amounts
of labeled training data to achieve high performance. Un-
fortunately, such a requirement cannot be met in many real-
world applications. The number of labels is limited and man-
ual annotation is expensive and time-consuming. Therefore,
it is valuable to learn a model for a new domain from one
with existing labeled samples. However, the difference be-
tween the two domains, termed the domain shift, can cause
difficulty with direct use of models from one domain on an-
other. Unsupervised domain adaptation (UDA) has emerged
as a prominent method to address the domain shift.

Deep learning models have been widely used in UDA.
Earlier methods rely on minimizing the discrepancy be-
tween the source and target distributions by proposing dif-
ferent loss functions, such as Maximum Mean Discrepancy
(MMD) [1], CORrelation ALignment [2], Kullback-Leibler
divergence [3]. To learn domain invariant features, adver-
sarial domain adaptation methods aim to identify domain in-

variant features by playing a min-max game between domain
discriminator and feature extractor [4, 5]. However, most of
these UDA methods do not consider constructing separable
domain-specific features (fds) and domain-invariant features
(fdi) to learn more discriminative representations.

Recently, disentanglement representation based methods
can learn discriminative fds, which contains domain related
information, and fdi, which contains intrinsic information
related to different categories. Cross domain representation
disentangler [6] bridged labeled source domain and unla-
beled target domain via jointly learning cross-domain feature
representation disentanglement and adaptation. Gonzalez
et al. [7] proposed an image-to-image translation for repre-
sentation disentangling based on GANs and cross-domain
autoencoders. They separated the internal representation into
three parts: shared part, which contains the domain invariant
features for two domains, and two exclusive parts, which con-
tain the domain-specific features. Peng et al. [8] minimized
mutual information between fds and fdi to pursue implicit
domain invariant features. Liu et al. [9] introduced a unified
feature disentanglement network to learn a domain-invariant
representation from multiple domains for image translation
and manipulation. Gholami et al. [10] presented a multi-
target domain adaptation information theoretic approach to
find a shared latent space of all domains by simultaneously
identifying the remaining private, domain-specific factors.
However, these methods either cannot fully separate fds and
fdi [6, 7, 9] or the reconstructed features are insufficiently
used during training to facilitate the performance of a domain
discriminator and a domain-invariant classifier [8, 10].

To alleviate these issues, we propose an enhanced separa-
ble disentanglement (ESD) model. Our contributions are:

• We propose a novel method for feature disentanglement
representation learning: 1) teach a disentangler to dis-
till domain-specific from domain-invariant features; 2)
apply feature separation maximization processes to en-
hance the disentangler and improve the effectiveness of
both kinds of features; 3) design a reconstructor to re-
cover original feature prototypes which can be further
re-utilized in steps 1) and 2) to improve performance.

• For feature separation maximization, we first propose a
novel structural similarity loss to maximize the dissim-
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Fig. 1: An overview of ESD. We first employ ResNet50 as feature extractor G to extract features of two domains. We then
employ 1) a disentangler to distill domain-specific fds and domain-invariant fdi features and then train domain-specific classifier
Cds and invariant classifier Cdi, respectively (blue arrows); 2) feature separation processes to enhance the disentangler and
minimize contamination between fds and fdi (red lines); 3) a reconstructor to recover original feature prototypes (green lines)
and finally re-utilize the reconstructed features (RS and RT ) to improve Cds and Cdi (purple lines). Norm.: normalization.

ilarity between fds and fdi, and then propose opposite
binary cross-entropy loss and accurate loss to further
remove contaminated information.

• The reconstructor recovers original feature prototypes
using reconstructed features which are then used to up-
date the learned classifier.

Extensive experiments on three benchmark datasets show that
our ESD model outperforms state-of-the-art methods.

2. METHODS
Problem and notation. For UDA, given a source domain
DS = {Xi

S , Y
i
S}

ns
i=1 of ns labeled samples in K categories

and a target domain DT = {Xj
T }

nt
j=1 without any labels (YT

for evaluation only), our ultimate goal is to learn a classifier
under a feature extractor G, that produces lower generaliza-
tion error in the target domain.

Disentangler. As shown in Fig. 1, feature extractor G
maps a labeled source domain and an unlabeled target do-
main into latent feature prototypes fG. For a classical disen-
tangler (D), it disentangles fG into domain-specific features
fds, and domain-invariant features fdi. In the first step, for
fdi, we aim to train a domain invariant classifier Cdi using
the labeled source invariant features fSdi and make predictions
for the target invariant features fTdi with typical cross-entropy
loss as follows:

Ldi = LC(Cdi(f
S
di), YS), (1)

where LC is cross-entropy loss. For fds, we aim to learn a
domain discriminator classifier Cds using adversarial loss to
distinguish the source domain-specific features fSds and the
target domain-specific features fTds in the following equation.

Lds = Exi
s∼fS

ds
log[Cds(x

i
s)]+Exj

t∼fT
ds

log[1−Cds(x
j
t )], (2)

where domain labels of fSds and fTds are set as 1 and 0. How-
ever, a traditional disentangler cannot ensure that there is no
contaminated information between fdi and fds. We employ a
feature separation enhancement step to alleviate this issue.

Feature Separation Enhancement. In step two, to guar-
antee the completed feature separation between fdi and fds,
we also employ three processes. First of all, we maximize the
dissimilarity between fdi and fds. Peng et al. [8] proposes
to minimize the mutual information between them. How-
ever, there is no closed solution for minimizing mutual infor-
mation, and the Monte Carlo sampling will lead to external
computation. Instead, we directly maximize the dissimilar-
ity between the disentangled features, which is equivalent to
minimizing the similarity between fdi and fds. We impose a
batch-wise structural similarity loss.

LS = abs(
(2µB1µB2 + C1)(2σB1B2 + C2)

(µ2
B1

+ µ2
B2

+ C1)(σ2
B1

+ σ2
B2

+ C2)
), (3)

where abs takes the absolute value, B1 ∈ fdi and B2 ∈ fds
are batch-wise features, µB1

, µB2
, σB1

, σB2
, and σB1B2

are
mean, standard deviations of domain invariant and specific
features batch, and cross-covariance for (B1, B2). C1 and C2

are two variables to stabilize the division with weak denomi-
nator. This loss function is derived from structural similarity
index measure (SSIM) [11]. It has the advantages of measur-
ing luminance, contrast and structural difference between B1

and B2. Therefore, LS has more capability of measuring the
similarity between fdi and fds. In addition, the range of the
LS is from 0 to 1, where 1 indicates high similarity between
batch features, and 0 means they are not similar. During the
training, we keep minimizing such a similarity, and thus con-
tamination between fdi and fds is also minimized.

Secondly, to further ensure domain-specific features are
fully segregated from domain-invariant features, we leverage



fdi to fool the trained domain-specific classifier Cds using
opposite binary cross-entropy loss in Eq. 4.

LO = Exi
s∼fS

di
log[1−Cds(x

i
s)] +Exj

t∼fT
di

log[Cds(x
j
t )] (4)

Differing from Eq. 2, the labels of fSdi and fTdi are set as 0 and
1, oppositely. Since we want the trained Cds to be unable to
predict the correct domain labels of fdi, we effectively force
fds to contain no fdi information.

Thirdly, to remove fds from fdi, we design an accurate
loss to force no correct labels can be predicted using trained
domain invariant classifier Cdi as follows:

LA =
|Cdi(f

S
ds) ∧ Cdi(f

S
di)|

ns
+
|Cdi(f

T
ds) ∧ Cdi(f

T
di)|

nt
, (5)

where ∧ is the and operation, and | · | measures the length.
The numerator measures the number of the same predictions
of source and target fds and fdi, respectively. Minimizing
such an accurate loss, we can make sure that the predictions
of fds are different from fdi. Hence, we can force fdi contains
no fds information.

Considering the above three processes, we can enhance
the disentangler to minimize the contamination between fdi
and fds.

Reconstructor. In step three, to keep the information in-
tegrity of feature disentanglement, we train a reconstructor
(R) to recover original feature prototypes (fG) using the dis-
entangled fdi and fds. Let RS = R(fSdi, f

S
ds) and RT =

R(fTdi, f
T
ds), the reconstruction loss is defined as:

LR = ||RS − fSG||22 + ||RT − fTG ||22. (6)

By this reconstructor R, we can guarantee that RS ∼ fSG and
RT ∼ fTG . Differing from previous work, we take advantage
of reconstructed features to further improve the performance
of Cdi and Cds. As shown in purple lines in Fig. 1, we re-
utilize the reconstructed features in the disentangler. At this
stage, all parameters in step one and two are fixed, i.e.,D,Cdi

and Cds are fixed. We directly apply the trained disentangler
D to get the disentangled features f̂di and ˆfds using the re-
constructed features R(fG). Therefore, we will repeat the
minimization equations in step one and step two in Eq. 7.

LT = L̂di + L̂ds + L̂S + L̂O + L̂A, (7)

where in Eq. 1 to Eq. 5, we will directly compute the loss
by replacing fdi and fds with f̂di and ˆfds, and replacing
fSdi, f

T
di, f

S
ds, f

T
ds with f̂Sdi, f̂

T
di,

ˆfSds,
ˆfTds, while all other com-

ponents are the same as before.
The overall training objective function. The architec-

ture of our proposed ESD model is shown in Fig. 1. Our
model minimizes the following objective function.

L(XS , YS , XT ) = argmin ((Ldi + Lds)

+ α(LS + LO + LA) + β(LR + LT ))
(8)

where (·) represents loss functions in each step, α and β are
factors to balance the importance of steps two and three.

3. EXPERIMENTS

Datasets. We test our model using three public image
datasets: Office-31, Office-Home and VisDA-2017. Office-
31 [12] has 4,110 images from three domains: Amazon (A),
Webcam (W), and DSLR (D) in 31 classes. In experiments,
A�W represents transferring knowledge from domain A to
domain W. Office-Home [13] dataset contains 15,588 im-
ages from four domains: Art (Ar), Clipart (Cl), Product (Pr)
and Real-World (Rw) in 65 classes. VisDA-2017 [14] is
a challenging dataset due to the big domain-shift between
the synthetic images (152,397 images from VisDA) and the
real images (55,388 images from COCO) in 12 classes. We
evaluate our method on the setting of synthetic-to-real as the
source-to-target domain and report accuracy of each category.

Implementation details. We implement our approach
using PyTorch and extract features for the three datasets
from finely tuned ResNet50 (Office-31, Office-Home) and
ResNet101 (VisDA-2017) networks [15]. The 1,000 features
are then extracted from the last fully connected layer for the
source and target features. In the Disentangler D, the number
of outputs of the first two Linear layers are 1000 and 512, and
the output of the last Linear layer is the number of classes
(K) in each dataset, while the output in the reconstruction
layers is opposite (K, 512, and 1000). C1 = 0.012 and
C2 = 0.032 as in [11]. The learning rate = 0.001, batch size =
32 and number of iterations = 100 with SGD optimizer. The
balanced factors α = 0.3 and β = 0.1.

Comparison to state-of-the-art methods. We compare
the performance of our ESD model with 15 state-of-the-art
methods. For a fair comparison, baseline results are directly
reported from their original papers. From Tables 1 to 3, we
can observe that the accuracy of the ESD model is ahead of
all other methods in most tasks. For the Office-31 dataset, the
average accuracy of ESD is 91.4%. It is superior to all other
methods. ESD shows substantially better transferring ability
than other methods in tasks W�A and D�A. In another dif-
ficult Office-Home dataset, which has more categories, more
samples, and larger domain discrepancy than the Office-31
datasets, the average accuracy is 71.6%, which exceeds the
SOTA methods. Our model has a particularly obvious im-
provement in the challenging VisDA-2017 dataset, which has
many more samples and larger domain discrepancy than the
other two datasets. Our model achieves the highest accuracy
89.2%, which is two percent higher than the best baseline
CAN. By testing on three distinct datasets, we give evidence
of ESD’s broad applicability.

4. DISCUSSION

In all experiments, our method achieves the highest average
accuracy. There are two prominent reasons for the success of
our model. First of all, the proposed three novel loss func-
tions (LS , LO and LA) in the feature separation enhancement
step are important to remove contaminated information be-



Table 1: Accuracy (%) on Office-Home dataset (based on ResNet50)
Task Ar�Cl Ar�Pr Ar�Rw Cl�Ar Cl�Pr Cl�Rw Pr�Ar Pr�Cl Pr�Rw Rw�Ar Rw�Cl Rw�Pr Ave.

ResNet-50 [16] 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1
DAN [17] 43.6 57.0 67.9 45.8 56.5 60.4 44.0 43.6 67.7 63.1 51.5 74.3 56.3
DANN [4] 45.6 59.3 70.1 47.0 58.5 60.9 46.1 43.7 68.5 63.2 51.8 76.8 57.6

JAN [18] 45.9 61.2 68.9 50.4 59.7 61.0 45.8 43.4 70.3 63.9 52.4 76.8 58.3
TAT [19] 51.6 69.5 75.4 59.4 69.5 68.6 59.5 50.5 76.8 70.9 56.6 81.6 65.8
ETD [20] 51.3 71.9 85.7 57.6 69.2 73.7 57.8 51.2 79.3 70.2 57.5 82.1 67.3

SymNets [21] 47.7 72.9 78.5 64.2 71.3 74.2 64.2 48.8 79.5 74.5 52.6 82.7 67.6
DCAN [22] 54.5 75.7 81.2 67.4 74.0 76.3 67.4 52.7 80.6 74.1 59.1 83.5 70.5

ESD 53.2 75.9 82.0 68.4 79.3 79.4 69.2 54.8 81.9 74.6 56.2 83.8 71.6

Table 2: Accuracy (%) on VisDA-2017 dataset (based on ResNet101)
Task plane bcycl bus car horse knife mcycl person plant sktbrd train truck Ave.

Source-only [16] 55.1 53.3 61.9 59.1 80.6 17.9 79.7 31.2 81.0 26.5 73.5 8.5 52.4
DANN [4] 81.9 77.7 82.8 44.3 81.2 29.5 65.1 28.6 51.9 54.6 82.8 7.8 57.4
DAN [17] 87.1 63.0 76.5 42.0 90.3 42.9 85.9 53.1 49.7 36.3 85.8 20.7 61.1
JAN [18] 75.7 18.7 82.3 86.3 70.2 56.9 80.5 53.8 92.5 32.2 84.5 54.5 65.7

MCD [23] 87.0 60.9 83.7 64.0 88.9 79.6 84.7 76.9 88.6 40.3 83.0 25.8 71.9
DADA [24] 92.9 74.2 82.5 65.0 90.9 93.8 87.2 74.2 89.9 71.5 86.5 48.7 79.8
STAR [25] 95.0 84.0 84.6 73.0 91.6 91.8 85.9 78.4 94.4 84.7 87.0 42.2 82.7
CAN [26] 97.9 87.2 82.5 74.3 97.8 96.2 90.8 80.7 96.6 96.3 87.5 59.9 87.2

ESD 96.8 89.1 87.9 80.3 96.7 96.9 92.5 84.9 96.9 97.5 88.9 62.8 89.2

Table 3: Accuracy (%) on Office-31 (based on ResNet50)
Task A�W A�D W�A W�D D�A D�W Ave.

RTN [27] 84.5 77.5 64.8 99.4 66.2 96.8 81.6
ADDA [5] 86.2 77.8 68.9 98.4 69.5 96.2 82.9

JAN [18] 85.4 84.7 70.0 99.8 68.6 97.4 84.3
TAT [19] 92.5 93.2 73.1 100 73.1 99.3 88.4

TADA [28] 94.3 91.6 73.0 99.8 72.9 98.7 88.4
SymNets [21] 90.8 93.9 72.5 100 74.6 98.8 88.4

CAN [26] 94.5 95.0 77.0 99.8 78.0 99.1 90.6
ESD 94.6 96.2 80.1 99.0 80.4 98.0 91.4

tween domain-specific and domain-invariant features, which
improves the performance of Cdi. Secondly, re-utilizing re-
constructed features is also helpful in optimizing Cdi and
Cds and leads to higher accuracy. We also observe that our
model is suboptimal in some tasks (Rw�Cl in Office-Home
and D�W in Office-31 dataset), so we cannot guarantee that
our model always beats all other methods.

To show how different steps affect final performance, we
also conduct an ablation study in Tab. 4 (step one is required).
We find step two is more important than step three in improv-
ing final accuracy (90.8% v.s. 89.8%), but both contribute
to final performance. To intuitively present adaptation per-
formance and the effects of step two, we utilize t-SNE [29]
to visualize the deep features of network activations in 2D
space before and after adaptation (domain invariant/specific

Table 4: Ablation tests on Office-31 (minus steps II and III).

Task A�W A�D W�A W�D D�A D�W Ave.
ESD−II−III 91.2 87.6 76.3 98.2 76.2 96.6 87.7
ESD−II 92.1 93.9 78.5 98.6 79.1 96.6 89.8
ESD−III 94.3 95.3 79.8 98.8 79.3 97.2 90.8
ESD 94.6 96.2 80.1 99.0 80.4 98.0 91.4

Fig. 2: Visualization of learned features using a 2D t-SNE
view of task A�D in Office-31 dataset.

features) as shown in Fig. 2. Apparently, the distributions
of domains A and D become more discriminative after adap-
tation (fdi), while many categories are mixed in the feature
space before adaptation. In addition, the fds can also dis-
tinguish the target domain from the source domain. Further-
more, the distributions of fdi and fds are different, which im-
plies that contamination between them is minimized. This
result indicates that ESD can learn more discriminative repre-
sentations.

5. CONCLUSION

We have presented a novel enhanced separable disentangle-
ment model to improve the separability between domain-
specific and domain-invariant features. Specifically, we im-
pose structural similarity loss, opposite binary cross-entropy
loss, and accurate loss functions to minimize contamination
among disentangled features. We further re-utilize the re-
constructed features to improve the performance of domain
discrimination and domain-invariant classification. Extensive
experiments demonstrate that our ESD model outperforms
state-of-the-art methods.
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