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Corticospinal Tract (CST) reconstruction based on fiber orientation distributions
(FODs) tractography
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Abstract—The Corticospinal Tract (CST) is a part of pyra-
midal tract (PT) and it can innervate the voluntary movement
of skeletal muscle through spinal interneurons (the 4th layer of
the Rexed gray board layers), and anterior horn motorneurons
(which control trunk and proximal limb muscles). Spinal cord
injury (SCI) is a highly disabling disease often caused by
traffic accidents. The recovery of CST and the functional
reconstruction of spinal anterior horn motor neurons play an
essential role in the treatment of SCI. However, the localization
and reconstruction of CST are still challenging issues, the
accuracy of the geometric reconstruction can directly affect
the results of the surgery. The main contribution of this paper
is the reconstruction of the CST based on the fiber orientation
distributions (FODs) tractography. Differing from tensor-based
tractography in which the primary direction is a determined
orientation, the direction of FODs tractography is determined
by the probability. The spherical harmonics (SPHARM) can
be used to approximate the efficiency of FODs tractography.
We manually delineate the three ROIs (the posterior limb of
the internal capsule, the cerebral peduncle, and the anterior
pontine area) by the ITK-SNAP software, and use the pipeline
software to reconstruct both the left and right sides of the CST
fibers. Our results demonstrate that FOD-based tractography
can show more and correct anatomical CST fiber bundles.

Keywords-Corticospinal Tract reconstruction; fiber orienta-
tion distributions; tractography;

I. INTRODUCTION

The Corticospinal Tract (CST) is a part of pyramidal tract

(PT), and many of its fibers originate from the primary motor

cortex (the precentral gyrus) then terminate in the spinal cord

[1, 2]. The CST is thought to originate from the premotor area,

the supplementary motor area, and the somatosensory cortex,

and then terminate at the thoracic levels (20%), lumbosacral

levels (25%) and cervical levels (55%) [3, 4]. Evidence

shows that the CST serves as the major downstream motor

tract in the mammalian spinal cord, and the fibers control

the voluntary movement of skeletal muscle by directly or

indirectly innervating the neurons in the anterior horn [5].

However, the structural and functional properties of the CST

are far more complex than researchers previously thought,

and we continue to have a new understanding about the

CST with the advancement of technology, thus the CST is

still one of the hotspots in neuroscience research [6, 7, 8].

About 75%-90% of the CST fibers descend to the lateral

corticospinal tract by decussation of the pyramid, but a few

fibers form the anterior corticospinal tract by not crossing

the pyramid [9, 10]. The fibers, which first passed through

the medial posterior spinocerebellar tract then went into the

lumbosacral spinocerebellar tract, were not yet appeared

[11, 12]. The main function of the CST is innervating

the voluntary movement of skeletal muscle through spinal

interneurons (the 4th layer of the Rexed gray board layers),

and anterior horn motorneurons (which control trunk and

proximal limb muscles), then the CST terminates in the spinal

motor cells (which control the fine motor of small muscle

in extremities) [13]. Spinal cord injury (SCI) is a highly

disabling disease in clinical practice. With the popularization

of modern transport vehicles and the acceleration of the

process of industrialization, the number of patients with SCI

is increasing day by day, many people were injured in traffic

accidents. If the CST is damaged, it can seriously affect the

quality of life of patients and even lead to paralysis. Patients

with rigid muscle, spasm, paralysis and other pathologies

are usually considered to have CST injury [14]. When the

CST is damaged in the SCI, the motor pathways are affected,

and these surviving spinal cord nerve cells, which are below

the injury surface, lose neural innervation of the brain, and

are unable to perform the random functional activity [15].

In addition, the repair of the CST after the SCI is still a

vital research topic in neuroscience, and the recovery of

limb motor function can be promoted by the CST repair or

functional remodeling. Although many types of experimental

research have made great progress, there has been no report

of successful clinical application [16]. Therefore, the recovery

of CST and the functional reconstruction of spinal anterior

horn motor neurons play an essential role in the treatment

of SCI [17]. However, the localization and reconstruction

of CST are still challenging issues, and the accuracy of the

geometric reconstruction can directly affect the results of

the surgery. Furthermore, there are few methods that can be

used to reconstruct the CST and the validation of clinical

application is still uncertain [18].

Diffusion tensor imaging (DTI) is a non-invasive technique

that can estimate the integrity of the white matter tracts by
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Figure 1: The four different images are used in the reconstruction of the CST fibers. (a): FOD images, which are the FODs

tractography files, (b): FA images which can be used to draw the ROIs using ITK-SNAP, (c): The CortexLabel images that

contain the labels of all the cortex; the labels of the left and right precentral gyrus are 49 and 50. (d): The mask of the

tractography image. In each image, the left is the coronal slice, the middle is the sagittal slice and the right is the axial slice

(A: anterior, I: inferior, R: right, L: left).

Figure 2: The seed region and three ROIs in the reconstruction of the CST fibers. (a): the coronal slice of the seed region

precentral gyrus, a1 is the left precentral gyrus and a2 is the right precentral gyrus. From (b) to (d) are the axial slice the

three ROIs (the posterior limb of the internal capsule, the cerebral peduncle, and the anterior pontine area). These three ROIs

are manually delineated by the ITK-SNAP. 1-6 are six labels, 1, 3 and 5 are the left ROIs, 2, 4, and 6 are the right ROIs (A:

anterior, P: posterior, R: right, L: left).

using the diffusion of water molecules [19, 20, 21]. Diffusion

tensor tractography (DTT), a three-dimensional visualized

version of DTI, has been widely used to reconstruct the CST

[8, 22, 23]. However, there are several challenges in these

papers. Firstly, the seed regions or the regions of interest

(ROIs) are different in these papers, the models of these

papers did not cover all the anatomic areas of the CST,

and the results did not reflect the complexity of the CST

fibers. Secondly, the validation of these models in the clinical

application still not fully clarified.

The main contribution of this paper is the reconstruction of

the CST based on the fiber orientation distributions (FODs)

tractography [24, 25]. The major difference between the

FODs tractography and the tensor-based tractography is the

definition of the tracts direction. Tensor-based tractography

relies on the three non-negative eigenvalues and eigenvectors,

the main direction is a determined orientation [26]. The FOD

tractography is fiber orientation distribution (the direction

is determined by the probability), the spherical harmonics

(SPHARM) can be used to approximate the efficiency of FOD

[24]. In this paper, we manually delineate the ROIs by the

ITK-SNAP software[27], and use the Lab of NeuroImaging

(LONI) pipeline software[28] to reconstruct both the left and

right sides of the CST fibers. Our results demonstrate that

FOD-based tractography can show correct anatomical CST

fiber bundles.

II. METHOD

A. Data

In this paper, the data are from Human Connectome Project

(HCP) [29], which can be found on LONI IDA (https://ida.

loni.usc.edu/services/NewUser.jsp) or ConnectomeDB (https:

//db.humanconnectome.org/app/template/Login.vm) . Figure 1

shows the four images ( fiber orientation distributions (FOD),
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Figure 3: The workflow of CST reconstruction method from Pipeline software, which is used to generate the reconstruction

CST fibers based on the FODs tractography. The input files are the gray circle buttons (Mask, FOD, Num track, Radius,

CortexLabel, and the CST ROIs), the output files are the gray triangular button, which is the fibers of the CST. The middle

FSL Maths modules can add more images in one module, the FSLChangeFiletype module can change the file type of the

image, and the streamtrack module can compute the fibers of the CST based on the FODs.

fractional anisotropy(FA), CortexLabel and Mask), which are

used to reconstruct the CST fibers.

B. ROIs

The CST primarily originates from the motor cortex (the

precentral gyrus), then descends to the forebrain, pons,

medulla, and pyramidal decussation and terminates at thoracic

levels, lumbosacral levels, and cervical levels. Therefore, the

ROIs should be in these different areas, but the proper ROIs

are still hard to decide. Many papers used the precentral

gyrus as the starting point since precentral gyrus is the major

area controls the movement of the arm, leg and the trunk

[30, 8, 31]. However, the organization of the fibers can be

distorted in patients with brain tumors [8], so more ROIs

along the CST should be included. Another two ROIs (the

posterior limb of the internal capsule (PLIC) and anterior

pontine area (aiP)) were used in Carolin et al., 2015. The

internal capsule lies in the forebrain, the pons is a part of

the brainstem, both of these two regions are involved in

the movement pathways, they can affect the movement of

the leg, trunk, and arm. Therefore, the PLIC and aiP are

two essential ROIs. Several papers showed that the cerebral

peduncle (CP) of the midbrain is another important ROI of

the CST reconstruction, since it also involved in innervating

the movement pathways [30, 32]. Although Venkateswaran

and Erik, 2017 used centrum semiovale at top of lateral

ventricle (CSoLV) as additional ROIs[6], the CSoLV is not

significant comparing with the other three ROIs, therefore,

we exclude this area in our study. In this paper, the seed

region is the precentral gyrus, the ROIs are the PLIC, CP

and the aiP. Figure 2 shows the seed region and ROIs in the

CST reconstruction.

C. Workflow of the Pipeline

We use Pipeline software [28] to reconstruct the CST fibers

after we choose the seed region and the ROIs. Figure 3 shows

the reverent workflow of the Pipeline when we compute the

fibers of the CST.

D. Parameters

The input files Mask, FOD, and CortexLabel are the three

images which are mentioned in section A (data part), the

CST ROIs are the images which are generated by manual

delineation by the ITK-SNAP. The number of the tracks

set as 1000, the radius is the 1.5, the cortex label of left

precentral gyrus is 49 and the right precentral gyrus is 50.

Besides, the left labels of the three ROIs are 1, 3 and 5, and

the right labels are the 2, 4, and 6. The left and the right

CST fibers are computed separately, the cortex label and the

ROIs labels should be consistent with the above parameters.

E. Outlier tracts remove

The result of the workflow is a tck file, we convert it into

the trk file by Matlab since the BrainSuite software [33]

cannot recognize the tck files. In addition, some fibers are

not normal and may be too long and project to other areas.
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Figure 4: The coronal slice of the reconstructed CST fibers. It overlays the fibers with the cortex label image to show the

projection of the fiber tracts into the precentral gyrus. (a): the left CST fibers, (b): the right CST fibers, (c): both the left and

right CST fibers (A: anterior, P: Posterior, R: right, L: left).

Figure 5: The coronal slice of the reconstructed CST fibers. It

overlays the fibers with the FA image to show the projection

of the fiber tracts into the precentral gyrus. (a): the left CST

fibers, (b): the right CST fibers (A: anterior, P: Posterior, R:

right, L: left).

Firstly, we filter the outlier tracts, and then some obvious

abnormal tracts are removed using the BrainSuite 16 a1 track

filtering options.

III. RESULTS

The reconstructed CST fibers are visualized by the

BrainSuite 16 a1, to show the anatomical validity of the

reconstruction results, we overlay the CST fiber bundles

with the FA image. Fig. 4 and 5 show the projection to the

precentral gyrus by overlaying the fiber tracts with the cortex

label and FA images. Fig. 6 shows the results of the CST

fibers through the posterior of the internal capsule and the

thalamus. Fig. 7 shows the results of the cerebral peduncle

by overlaying the fiber bundles with the FA image. And the

Fig. 8 overlays the fiber bundle with the FA image to the

anterior pontine area. These results demonstrate that the fiber

bundles are anatomically correct. Furthermore, these results

Figure 6: The axial slice of the reconstructed CST fibers. It

overlays the fiber bundle with the FA image that shows the

internal capsule and the thalamus. (a): the left CST fibers,

(b): the right CST fibers (A: anterior, P: Posterior, R: right,

L: left).

prove that the FOD-based tractography can provide a smooth,

clear and reliable reconstruction of the CST fibers.

IV. DISCUSSION

Comparing our results with [34, 35], our reconstruction

results show more fibers, which shows the high accuracy of

our methods. One limitation of the paper is that we only

choose three ROIs (the posterior limb of the internal capsule,

the cerebral peduncle, and the anterior pontine area); there

are more regions which can be explored, such as top of

the lateral ventricle (CSoLV) though it might not be as

important as above three ROIs, it still can be an interesting

direction. Our study also had a limited sample size. However,

Our tractography findings suggest the FODs reconstruction

method can accurately reconstruct the CST fibers; thus, the

power of our study is sufficient. For future work, we should

explore our reconstruction of the CST in recovery from the

SCI injury.

308



Figure 7: The axial slice of the reconstructed CST fibers. It

overlays the fibers with the FA image to show the middle

brain (mainly the cerebral peduncle). (a): the left CST fibers,

(b): the right CST fibers (A: anterior, P: Posterior, R: right,

L: left).

Figure 8: The axial slice of the reconstructed CST fibers. It

overlays the fibers with the FA image to show the anterior

pontine area. (a): the left CST fibers, (b): the right CST fibers

(A: anterior, P: Posterior, R: right, L: left).

V. CONCLUSION

In this paper, we reconstruct the Corticospinal Tract using

fiber orientation distributions tractography. Comparing with

determined orientation tensor-based tractography, the main

direction of FODs is based on probabilistic direction. We

manually delineate the three ROIs (the posterior limb of

the internal capsule, the cerebral peduncle, and the anterior

pontine area) by the ITK-SNAP software and use the pipeline

software reconstructs both the left and right sides of the CST

fibers. Our results demonstrate that FOD-based tractography

can show correct anatomical CST fiber bundles. The results

of our study show that the accurate reconstruction of CST

can be applied in improving both diagnostics and treatment

of Spinal cord injury in the future.
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