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Abstract

While huge volumes of unlabeled data are gener-
ated and made available in many domains, the de-
mand for automated understanding of visual data
is higher than ever before. Most existing machine
learning models typically rely on massive amounts
of labeled training data to achieve high perfor-
mance. Unfortunately, such a requirement cannot
be met in real-world applications. The number of
labels is limited and manually annotating data is
expensive and time-consuming. It is often neces-
sary to transfer knowledge from an existing labeled
domain to a new domain. However, model perfor-
mance degrades because of the differences between
domains (domain shift or dataset bias). To over-
come the burden of annotation, Domain Adapta-
tion (DA) aims to mitigate the domain shift prob-
lem when transferring knowledge from one domain
into another similar but different domain. Unsu-
pervised DA (UDA) deals with a labeled source
domain and an unlabeled target domain. The prin-
cipal objective of UDA is to reduce the domain dis-
crepancy between the labeled source data and unla-
beled target data and to learn domain-invariant rep-
resentations across the two domains during train-
ing. In this paper, we first define UDA problem.
Secondly, we overview the state-of-the-art meth-
ods for different categories of UDA from both tra-
ditional methods and deep learning based meth-
ods. Finally, we collect frequently used bench-
mark datasets and report results of the state-of-the-
art methods of UDA on visual recognition problem.

1 Introduction
In this era of big data, huge amounts of text, images, voices,
and other types of data are produced. Industry and the re-
search community have great demand for automatic classifi-
cation, segmentation, and regression for multimedia data [1;
2]1. Supervised learning is one of the most prevalent types

1This paper is adapted from Chapters 1 and 2 of my Ph.D. thesis:
Unsupervised Domain Adaptation for Visual Recognition [3].

of machine learning and has enjoyed much success across di-
verse application areas. In recent years, we have witnessed
the great success of deep neural networks in some standard
benchmarks such as ImageNet [4] and CIFAR-10 [5]. How-
ever, in the real world, we often have a serious problem that
lacks labeled data for training. It is known that training and
updating of the machine learning model depends on data an-
notation. Also, the high performance of machine learning
models depends on the existence of massive labeled train-
ing data. Unfortunately, such a requirement cannot be met
in many real scenarios with limited or no labels of collected
data. Also, a major assumption is that the training and test-
ing data have identical distributions. Such an assumption can
be easily distorted if the background, quality, or shape defor-
mation are different across the domains. In addition, it is of-
ten time-consuming and expensive to manually annotate data.
This brings challenges to properly train and update machine
learning models. As a result, some application areas have not
been well developed due to insufficient labeled data for train-
ing. Therefore, it is often necessary to transfer knowledge
from an existing labeled domain to a similar but different do-
main with limited or no labels.

However, due to the phenomenon of data bias or domain
shift [6] (when the target distribution, from which the test
images are sampled, is different from the training source dis-
tribution), machine learning models do not generalize well
from an existing domain to a novel unlabeled domain. For
traditional machine learning approaches, we usually assume
that training data (source domain) and test data (target do-
main) are from the same distribution, and models are opti-
mized from training data to directly apply in test data for pre-
diction. The differences between training and test data are
omitted. However, there are often differences between the
source and target domains, and traditional approaches have
lower performance if there is a domain shift issue. It is hence
important to mitigate the domain shift problem to improve
model performance across different domains.

Domain adaptation (DA) is one of the special settings of
transfer learning (TL), which aims to leverage knowledge
from an abundant labeled source domain to learn an effective
predictor for the target domain with limited or no labels while
mitigating the domain shift problem. In recent years, DA
keeps gaining attention in the computer vision field, as shown
in Fig. 1. More and more DA related papers are published ev-
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ery year, which shows the importance of applications of DA.
There are three types of DA (supervised, semi-supervised,
and unsupervised DA), which depend on the number of labels
in the target domain. For supervised DA, all target data labels
are available. For semi-supervised DA, a portion of target
data labels are available. For unsupervised domain adaptation
(UDA), there is no label for the target domain. To circumvent
the limitations posed by insufficient annotation, techniques
combine the labeled source domain with unlabeled samples
from the target domain. In addition, the number of categories
of source and target domains are the same in UDA, which is
also called closed set domain adaptation.

Figure 1: The popularity of domain adaptation. Statistics is from
searching key word “domain adaptation” on Google Scholar (rough
estimation, image from [3]).

Existing domain adaptation methods assume that the data
distributions of the source and target domains are differ-
ent, but share the same label space. Traditional DA meth-
ods highly depend on the extracted features from raw im-
ages. With the development of deep neural networks, re-
searchers are utilizing higher performance deep features (e.g.,
AlexNet [7], ResNet50 [8], Xception [9], InceptionRes-
Netv2 [10]) instead of lower-level SURF features. However,
the predictive accuracy of traditional methods is affected by
the quality of the extracted features from deep neural net-
works [11]. Recently, deep neural network methods witness
great success in domain adaptation problems. Especially,
adversarial learning shows its power in embedding in deep
neural networks to learn feature representations to minimize
the discrepancy between the source and target domains [12;
13]. However, it narrowly focuses on improving existing so-
lutions from the source domain to the target domain, while
structure information from target samples is hard to preserve.
Also, it is difficult to remove noisily predicted labels in the
target domain.

There have been developed several surveys on the TL
and DA over the past fewer years [6; 14; 15; 16; 17; 18;
19]. Pan and Yang [6] were the first to categorize TL under
three settings: inductive TL, transductive TL, and unsuper-
vised TL. Their focus is on the homogeneous feature spaces.

Shao et al. [14] considered TL techniques for transferring
knowledge of feature-representation level and classifier-level.
Patel et al. [16] only focused on DA as a special case of
TL. Day and Khoshgoftaar [15] discussed heterogeneous TL
in different settings. Zhang et al. [17] summarized differ-
ent transferring criteria based on concepts of DA. In gen-
eral, these five surveys only covered models on traditional TL
or DA. Later, Csurka [18] analyzed the state-of-the-art tra-
ditional DA methods and categorized the deep DA method.
However, Csurka’s work discussed a few deep DA methods.
Wang and Deng [19] then classified the Deep DA into three
groups: discrepancy based, adversarial based and reconstruc-
tion based methods based on Csurka’s work. However, they
did not provide information regarding traditional methods.

In this paper, we mainly focus on the domain adaptation
on image recognition tasks. The contributions of this survey
are as follows. (i) We present a taxonomy of different DA
using traditional and deep learning based methods. (ii) We
are the first who study the traditional techniques in three dif-
ferent settings: feature selection, distribution adaptation, and
subspace learning. (iii) We also discuss the deep learning
based methods from discrepancy-based, adversarial-based,
pseudo-labeling-based, reconstruction-based, representation-
based, and attention-based methods. (iv) We collect several
benchmark datasets, which is widely used in UDA and report
results of state-of-the-art methods.

The rest of the paper is organized as follows: In Sections 2
and 3, we introduce the notations and generalization bound of
DA problem. In Section 4, we review the traditional methods
of UDA. In Section 5, we describe deep DA methods for im-
age recognition. In Section 6, we list the benchmark datasets
for DA and report the accuracy of state-of-the-art methods.

2 Notation
In this section, we formally define the notation in domain
adaptation. A domain D consists of a feature space X by
considering the marginal probability P (X ), and the task is
defined by the label space Y . The conditional distribution is
P (Y|X ), and the joint distribution is denoted as P (X ,Y).

When considering unsupervised domain adaptation in clas-
sification, there is a source domain DS = {X iS ,YiS}

NS
i=1 of

NS labeled samples in C categories and a target domain
DT = {X jT }

NT
j=1 of NT samples without any labels (YT is

unknown), also in C categories. The samples XS and XT
obey the marginal distribution of P (XS) and P (XT ). The
conditional distributions of the two domains are denoted as
P (YS |XS) and P (YT |XT ), respectively. Due to the dif-
ference of the two domains, the distributions are assumed
to be different, i.e., P (XS) 6= P (XT ) and P (YS |XS) 6=
P (YT |XT ). The goal for UDA is to learn a classifier with
lower generalization error in the target domain by mitigating
the domain discrepancy.

3 Generalization Bound for Domain
Adaptation

Before discussing the domain adaptation methods, we first
show the learning theory from Ben-David et al. [20] to esti-
mate the error bound of DA. It indicates that the target domain
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Figure 2: Taxonomy of unsupervised domain adaptation for image classification task (image adapted from [3]).

error can be minimized via bounding the source domain er-
ror and the discrepancy between them. Differing from most
conventional machine learning methods, the domain adapta-
tion approaches not only optimize the model with the source
domain, but also consider the target data and reduce the dis-
crepancy between them in the following Theorem.

Theorem 1 Let H be a hypothesis space. Given two do-
mains DS and DT , we have

∀h ∈ H, RT (h) ≤ RS(h) + dH∆H(DS ,DT ) + β,

where RS(h) and RT (h) represent the source and target do-
main error, respectively. dH∆H is the discrepancy distance
between two distributions DS and DT w.r.t. a hypothesis set
H. β = arg minh∈HRS(h∗, fS) + RT (h∗, fT ) where fS
and fT are the label functions of the source and target do-
mains, which can be determined by YS and pseudo target
domain labels. h∗ is the ideal hypothesis and β is the shared
error and is expected to be negligibly small and can be disre-
garded.

Recall that RS(h) can be minimized via training the la-
beled source domain. Existing DA models always aim to find
a minimal dH∆H(DS ,DT ) to pursue a lower generalization
bound of RT (h).

According to the similarities and differences between fea-
ture space and label space, the DA can be classified into two
categories: homogeneous DA and heterogeneous DA. In ho-
mogeneous DA, the feature space is the same (FS = FT )
with the same feature dimensionality (dS = dT ). In het-
erogeneous DA (FS 6= FT ), the feature dimensionality is
different (dS 6= dT ). In this paper, we will mainly discuss
homogeneous DA and focus on the most challenges of unsu-
pervised DA. In Secs. 4 and 5, we introduce a taxonomy of
unsupervised domain adaptation for image classification task
in two tracks: traditional methods and deep learning-based
methods as shown in Fig. 2.

4 Traditional methods
In this section, we review traditional DA methods, which rely
on extracted features from raw images. As shown in Fig. 2,
we classify traditional DA methods into three sub-groups:
feature selection, distribution adaptation, and subspace learn-
ing. For feature selection methods, we first learn a method
to represent images, and we assume that the source and tar-
get domains share similarities in the features. Our goal is
to select these features that are shared between the two do-
mains. For distribution adaptation, we assume that the dis-
tributions of the source domain and target domain are differ-
ent but share similarity, and we aim to align the distributions
between the source domain and the target domain. For sub-
space learning, we assume that there is a shared subspace (a
lower-dimensional representation) between two domains, and
domain shift can be minimized in such a common subspace.

Figure 3: Frequently used image feature types for DA, while
ResNet50 is the most frequently used deep network for feature ex-
traction. IRV2: InceptionResNetv2. The shading SURF is tradi-
tional feature (image from [3]).

4.1 Feature selection methods
The first step for visual recognition is to find a proper way
to represent images. In recent decades, with the emergence
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of deep networks, the feature representation of images has
changed rapidly. As shown in Fig. 3, speeded up robust fea-
tures (SURF) is one of the most popular extracted features
for visual recognition before the deep features. It is a fast and
robust algorithm for local, similarity invariant representation,
and comparison of images feature [21]. However, SURF can
only detect some points, but not all important features. Af-
ter the emergence of different ImageNet-trained deep mod-
els, their deep features have been widely used in the field of
computer vision as shown in Fig. 3. The underlying assump-
tion of the feature selection method is that both the source
domain and the target domain contain at least some common
features. The goal of this kind of method is to select these
shared features through a machine learning method and then
build models based on these features.

Structural correspondence learning (SCL) [22] is one of
the most representative models to find the common features
of both domains. These common features are named as Pivot
features, which refer to the words that frequently appear in
different domains in text classification. Due to the stability
of these features, they can be used as the bridge to transfer
knowledge. It has three steps. 1) Feature Selection: SCL first
obtains the pivot features; 2) Mapping Learning: the pivot
features are utilized to find a low-dimensional common latent
feature space; 3) Feature Stacking: a new feature representa-
tion is constructed by feature augmentation.

Figure 4: The scheme of Pivot feature in feature selection methods
(image from [22]).

Esmat et al. [23] proposed a mixed gravitational search al-
gorithm (MGSA) to reduce the semantic gap between low-
level visual features and high-level semantics through si-
multaneous feature adaptation and feature selection. Later,
feature selection and structure preservation (FFSL) [24]
smoothly integrated structure preservation and feature selec-
tion into a unified optimization problem. They first selected
relevant features across two domains and then utilized a near-
est neighbor graph and a representation matrix to preserve
the geometric structure. Also, there are extended works to
incorporate other techniques. Gu et al. [25] proposed a joint
feature selection and a subspace learning model to unify fea-
ture selection and subspace learning in a framework. Transfer
Joint Matching (TJM) [2], simultaneously adapted marginal
distribution and performed source domain sampling selection
during the process of optimizing an objective function. Com-
bining deep features with traditional methods has also been
explored [26; 27; 28], Zhang et al. investigated how differ-
ent pre-trained ImageNet models affect transfer accuracy on
domain adaptation problems [11]. They found that features
from a better ImageNet model can improve the performance
of domain adaptation. This observation was further validated
by their later work [29].

Figure 5: An example of different types of distribution alignment.
Type I: marginal distribution; Type II: conditional distribution; Type
III: joint distribution (including aligning both I and II). Black line:
classifier (image from [3]).

4.2 Distribution adaptation methods
Distribution adaptation methods can be classified into three
categories: marginal distribution adaptation (P (XS) 6=
P (XT )), conditional distribution adaptation (P (YS |XS) 6=
P (YT |XT )) and joint distribution adaptation (P (XS ,YS) 6=
P (XT ,YT )). Therefore, many methods aim to minimize do-
main shift from these three directions to make these distri-
butions are similar to each other across different domains.
Fig. 5 illustrates the different priorities of distribution, Type
I first aligns the marginal distribution and type II first aligns
the conditional distribution, and type III aligns the marginal
and conditional distribution together.

Marginal distribution adaptation
In this setting, it assumes that the marginal distributions be-
tween the two domains are different (P (XS) 6= P (XT )),
which should be aligned first. This pattern is shown as the
marginal distribution alignment in Fig. 5, which focused on
overall shape alignment. It minimizes the distance between
the probabilistic distribution of source and target domain in
Eq. (1).

min dH∆H(DS ,DT ) ≈ ||P (XS)− P (XT )||, (1)

where dH∆H is the discrepancy distance between the two do-
mains (DS and DT ), || · || is the L2 norm.

Figure 6: Comparison of TCA and PCA. The red color is the source
distribution and blue color is the target distribution. The distribution
between two domains are more closed to each other after preforming
TCA (image modified from [30]).

Maximum mean discrepancy (MMD) is one of most clas-
sical measurements to align the data distribution of the two
domains [30; 31; 2], and its distance function is defined in
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Eq. (2).

MMD(DS ,DT ) = || 1

NS

NS∑
i=1

φ(X iS)− 1

NT

NT∑
j=1

φ(X jT )||2H,

(2)
where NS and NT are number of samples in the source and
target domain, φ is the mapping and H is the universal Re-
producing Kernel Hilbert Space (RKHS).

Pan et al. [30] introduced transfer component analysis
(TCA) to adopt MMD and measured the marginal distribu-
tion difference in a RKHS by enforcing the scatter matrix (a
statistic that can make estimates of the covariance matrix) as
a constraint. TCA assumed that there is a map (φ), which can
make P (φ(XS)) ≈ P (φ(XT )). The conditional distribution
is also similar (P (YS |φ(XS)) ≈ P (YT |φ(XT ))). In TCA,
it learns a linear mapping from an empirical kernel feature
space to a low-dimensional feature space. In this way, it has
a relatively low computational burden.

Later, there were also more proposed models based on
TCA ([31; 2; 32; 33]). Adapting component analysis
(ACA) [31] addressed the difference of the marginal distri-
bution by a Hilbert Schmidt independence criteria (HSIC)
based on TCA. Duan et al. [34] proposed a unified framework
termed domain transfer multiple kernel learning (DTMKL).
DTMKL introduced the multiple kernel-based TCA, and the
kernel function is assumed to be a linear combination of a
group of base kernels. Then the marginal distribution can
be minimized. Transfer joint matching (TJM) [2] updated
the marginal distribution while optimizing objective func-
tions. Distribution matching embedding (DME) [32] first
calculated the transformation matrix and then performed the
feature map. Another method called ITCA [33] updated the
global and local marginal distributions at the same time.

Figure 7: The scheme of distribution matching embedding (DME)
model (image from [32]).

However, marginal distribution alignment assumes that the
conditional distribution between two domain are similar to
each other once the marginal distribution is aligned. In the
real case, such an assumption is usually not valid; therefore,
the conditional distribution should also be aligned.

Conditional Distribution Adaptation
In this setting, we assume that the conditional distribution
is varied between two domains (P (YS |XS) 6= P (YT |XT )).

Many methods minimize the conditional distribution distance
between the source and target domain as follows.

min dH∆H(DS ,DT ) ≈ ||P (YS |XS)− P (YT |XT )||, (3)

Fig. 5 also shows the conditional distribution adaptation,
and it focuses on aligning the categorical distributions. How-
ever, due to the unlabeled target domain, such an alignment is
difficult. Therefore, many methods take advantage of pseudo
labels of the target domain.
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Figure 8: The scheme of stratied transfer learning (STL) model (im-
age from [35]).

In this scope, Satpal and Sarawagi [36] proposed condi-
tional probability models via feature subsetting. They com-
bined conditional random fields and conditional probability
adaptation to reduce the prediction error. Elsewhere [35],
they proposed to extract conditional transferable compo-
nents (CTC) from conditional distribution first, and then the
marginal distribution is modeled. Later, Wang et al. [37] in-
troduced the stratified transfer learning (STL) model. Most
previous models are based on the global domain shift (inter-
class transfer). However, it ignored intra-class transfer. Since
the intra-class transfer can utilize the intra-class features, it is
able to achieve a better transfer performance. The basic idea
of the STL method has three steps. At the first step, major-
ity voting is used to generate pseudo-labels for uncalibrated
location behavior; then, as the next step in the reproducing
kernel Hilbert space, the intra-class correlation is used to re-
duce the dimensionality adaptively. Note that dimensionality
reduction adaptively makes the correlation between behavior
data in different situations. Finally, the accurate calibration
of unknown data is realized by secondary calibration. To de-
termine the intra-class transfer, they calculated the MMD for
each class using the equation given below:

Dist(DS ,DT ) =

C∑
c=1

|| 1

nc

∑
xi∈DC

S

φ(xi)−
1

mC

∑
xj∈DC

T

φ(xj)||2H,

(4)
where C represents label categories, DCS and DCT is the C
category of the source and the target domains, respectively.
The STL method carried out cross-location behavior recog-
nition experiments using a large number of behavior recogni-
tion data.
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Although the conditional distribution alignment shows a
higher performance than marginal distribution alignment,
it still lacks the consideration of overall shape adaptation.
Therefore, joint alignment of these two distributions is neces-
sary.

Joint Distribution Adaptation
In this setting, many methods minimize the joint distribution
distance between the source domain and the target domain in
Eq. (5).

min dH∆H(DS ,DT ) ≈ ||P (XS)− P (XT )||+
||P (YS |XS)− P (YT |XT )||, (5)

The joint distribution adaptation corresponds to the last distri-
bution in Fig. 5. Joint distribution adaptation (JDA) [38] was
proposed to reduce the marginal and conditional distributions.
The main idea of the JDA method is to find a transformation
A to reduce the distance between P (ATXS) and P (ATXT ).
The distance between P (YS |ATXS) and P (YT |ATXT ) also
should be minimized. JDA model can be divided into two
steps: marginal distribution adaptation and conditional distri-
bution adaptation. For the marginal distribution adaptation, it
aimed to minimize Eq. (6).

|| 1

NS

NS∑
i=1

ATX iS −
1

NT

NT∑
j=1

ATX jT ||
2
H, (6)

For conditional distribution adaptation, it aimed to mini-
mize Eq. (7).

C∑
c=1

|| 1

nc

∑
xi∈DC

S

ATxi −
1

mc

∑
xj∈DC

T

ATxj ||2H, (7)

To realize it, the MMD metric and the pseudo label strat-
egy are adopted. The desired transformation matrix can be
obtained by solving a trace optimization problem via eigen-
decomposition. Further, it is obvious that the accuracy of the
estimated pseudo labels affects the performance of JDA. In
order to improve the labeling quality, the authors adopt it-
erative refinement operations. Specifically, in each iteration,
JDA is performed, and then a classifier is trained on the in-
stances with the extracted features. Next, the pseudo labels
are updated based on the trained classifier. After that, JDA
is performed repeatedly with the updated pseudo labels. The
iteration ends when convergence occurs.

In follow-up work, additional loss items are added on the
basis of JDA, which greatly improves the effect of trans-
fer learning. Adaptation regularization transfer learning
(ARTL) [39] embedded the JDA model into a minimum struc-
ture risk framework, which represents the directed learning
classifier. The authors also proposed two specific algorithms
under this framework based on different loss functions. In
these two algorithms, the coefficient matrix for computing
MMD and the graph Laplacian matrix for manifold regular-
ization are constructed at first. Then, a kernel function is se-
lected to construct the kernel matrix. Fig. 9 illustrates the
scheme of ARTL model.

Visual domain adaptation (VDA) [40] added the intra-class
and inter-class distances in the objective function based on

Figure 9: The scheme of adaptation regularization based transfer
learning (ARTL) model. MDA: marginal distribution adaptation;
CDA: conditional distribution adaptation; MR: manifold regulariza-
tion (image from [39]).

Figure 10: The scheme of the MEDA model. Features are first
learned via manifold kernel G. Then, dynamic distribution align-
ment will learn the domain-invariant classier f (image from [45]).

JDA. Hsiao et al., [41] controlled the structure invariant based
on JDA. Hou et al., proposed a model to select the target
domain [42], and joint geometrical and statistical alignment
(JGSA) [43] calculated intra-class, inter-class distance, and
label persistence based JDA. However, a disadvantage of JDA
is that marginal distribution and conditional distribution are
not equally important. Therefore, balanced distribution adap-
tation (BDA) [44] was proposed to solve this problem. The
classifier f keeps updating with different steps. It aimed to
control the balance between two distributions via the balance
factor µ using Eq. (8).

min dH∆H(DS ,DT ) ≈(1− µ)Dist(P (XS), P (XT ))

+ µDist(P (YS |XS), P (YT |XT )),
(8)

where µ ∈ [0, 1] is the balance factor; µ � 0 means that
there is a significant difference between the source domain
and the target domain data and µ � 1 implies that the source
domain and the target domain datasets have high similarity.
Wang et al. noted that conditional distribution adaptation is
more important. The balance factor can dynamically adjust
the importance of each distribution according to the actual
data distribution and achieve a good distribution adaptation
effect. When µ = 0, BDA is the TCA model, and if µ =
0.5, the BDA becomes the JDA model. In addition, they also
proposed the weighted BDA (WBDA). In WBDA [44], the
conditional distribution difference is measured by a weighted
version of MMD to solve the class imbalance problem.

Several approaches have addressed the alignment of
marginal distribution and conditional distribution of data in
special cases. Wang and Mahadevan aligned the source and
target domain by preserving the ‘neighborhood structure’ of
the data points [46]. Wang et al. proposed a manifold em-
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bedding distribution alignment method (MEDA) (based on
work of Gong et al. [47]) to align both the degenerate feature
transformation and the unevaluated distributions of both do-
mains [45]. The scheme of MEDA. MEDA model has three
fundamental steps: 1) learn features from the manifold based
on Gong et al. [47]; 2) use dynamic distribution alignment
to estimate the marginal and conditional distributions of data;
and, 3) update the classified labels based on estimated param-
eters.

The classifier (f ) is defined as:

f = arg min
f∈Hk

NS∑
i=1

l(f(g(X iS)),YiS) + η||f ||2K+

λDf (DS ,DT ) + ρRf (DS ,DT )

(9)

where Hk represents kernel Hilbert space; l(·, ·) is the loss
function; g(·) is a feature learning function in Grassmannian
manifold [47]; XS is the learned features from one of Ima-
geNet models, ||f ||2K is the squared norm of f ;Df (·, ·) repre-
sents the dynamic distribution alignment; Rf (·, ·) is a Lapla-
cian regularization; η, λ, and ρ are regularization parame-
ters. Here, the term arg minf∈Hk

∑NS
i=1 l(f(g(X iS)),YiS) +

η||f ||2K is the source structure risk minimization (SRM). We
can only employ the SRM on XS , since there are few labels
(perhaps no labels) for XT . By training the classifier from
Eq. (9), we can predict labels of test data. Here, the balance
factor µ minimizes MMD, and it can dynamically change
according to the importance between source and target do-
main. Therefore, it achieves a higher accuracy (MEDA >
BDA > JDA > TCA > conditional distribution adaptation >
marginal distribution adaptation [9]). Zhang et al. [48] pro-
posed to extract both marginal and condiction features from
a pre-trained ImageNet model to form the joint features and
then minimize the joint distribution between the two domains
based on MEDA.

Note that most feature selection and distribution alignment
methods focus on the explicit features in the original feature
space. In contrast, subspace learning also focuses on some
implicit features in an underlying subspace, which can show
the geometry of data. Therefore, subspace learning can play
various roles in the feature transformation process.

4.3 Subspace learning methods
There are two sub-categories of subspace learning models:
feature alignment and manifold learning. Feature alignment
methods aim to align the source feature with target features.
One of the earliest subspace learning methods is called sub-
space alignment (SA) [49]. It can align the source domain and
target domain via PCA with a lower subspace dimensionality
d, which is determined by the minimum Bregman divergence
of two subspaces and it minimizes the following function:

F (M) = ||X
′

SM −X
′

T ||2F , (10)

where || · ||2F is the Frobenius norm and M is the transforma-
tion matrix, and X ′

S ∈ RNS×d and X ′

T ∈ RNT ×d are gen-
erated from the first d eigenvectors from the original domain
data (X ′

S and X ′

T are the representations of the source and

target data in the reduced dimensionality subspace). Then, a
learner can be trained on the transformed matrix F (M).

Figure 11: The scheme of SDA model. The model considered
the subspace alignment and distribution adaptation (image modified
from [45]).

However, SA did not take the difference between the
source distribution and the target distribution into account.
Sun et al. [50] proposed the subspace distribution alignment,
which can not only align the feature space but also align the
distributions of domains. The SDA model improves the do-
main alignment via the distribution alignment. They first pro-
jected the labeled source-domain instances to the source sub-
space, then mapped to the target subspace, and finally mapped
back to the target domain.

One advantage of subspace-based methods is that the cal-
culation is simple and efficient. Similarly, the linear correla-
tion alignment (CORAL) minimized domain shift by aligning
the second-order statistics of source and target distributions
[51]; it solved the following optimization problem:

min
A
||CŜ − CT ||

2
F = min

A
||ATCSA− CT ||2F , (11)

where A is the transformation matrix, CŜ is the covariance
of the transformed source features XSA. CS , and CT are
covariance matrices of source and the target domain, respec-
tively. The main process of CORAL is updating the source
data using its covariance followed by the “re-coloring” of the
target covariance matrix.

There are also approaches to minimize domain discrep-
ancy based on the spectral feature alignment using graph
theory. Pan et al. proposed a spectral feature alignment
(SFA) [52] method. It can identify the domain-specific and
domain-independent features in different domains and then
aligns these domain-specific features by constructing a lower-
dimensional feature representation.

Manifold learning models aim to map the data on Rieman-
nian manifold and reduce the distance of the two domains on
the manifold. One of the earliest manifold learning methods
is based on the Grassmannian manifold, which learns the in-
termediate features between the sub-source and the sub-target
domain via a Grassmannian manifold. Gopalan et al. [53]
proposed a sampling geodesic flow (SGF) method to learn
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Figure 12: The scheme of sampling geodesic flow (SGF) method
(image from [53]).

the intermediate features between the sub-source and the sub-
target domain via the geodesic (shortest path) on Grassman-
nian manifold. To obtain the samples between XS and XT ,
sampling geodesic flow (SGF) consists of the following steps:
1) calculate the geodesic which starts from the source and
ends with target domains on the Grassmannian in the sub-
space; 2) sample a given number of subspaces along the
geodesic; 3) project the original feature vectors into samples’
subspaces and utilize the results as new features; 4) reduce
the dimensionality of the new features; and, 5) use the result-
ing new (reduced) feature vectors to train the classifiers and
evaluate on target data.

However, SGF has several limitations. Gong et al. have
noted that it is difficult to choose an optimal sampling strategy
[47]. Also, several basic parameters need to be adjusted: the
sample size, the reduced dimension of the subspace, and how
to represent original data using new samples. Moreover, SGF
has high time complexity, making sampling slow when many
points are needed.

Figure 13: The scheme of geodesic flow kernel (GFK) model. It
considers all samples points on the geodesic (image from [47]).

To overcome the limitations of unknown sampling size
and subspace dimensionality, the geodesic flow kernel (GFK)
was proposed by Gong et al. [47]. They integrated all sam-
ples along the “geodesic” (the shortest distance between two
points on the manifold), which is shown in the following
equation. ∫ 1

0

(Φ(t)Txi)
T (Φ(t)Txi)dt = xTi Gxi, (12)

where Φ is the projection matrix. The GFK model con-
tained the following steps: 1) compute the optimal reduced
dimensionality of the subspaces; 2) calculate the geodesic
curve; 3) compute the geodesic flow kernel; and, 4) use
the kernel to train a classifier with labeled data and test

Figure 14: The scheme of MDA model. Features are extracted from
the last fully connected layer in InceptionResNetv2 model, and then
align the distribution of learned features (image from [10]).

on unlabeled data. However, dimensionality is a hyper-
parameter of the GFK model; one needs to calculate the
optimal dimensionality. In addition, it has the constraint
that the size of dimensionality should be less than half of
the minimum dimension of source and test data, which is
d < 1

2 min(length(X ′

S), length(X ′

T )), where length refers
to the number of features in the sub-source X ′

S and sub-target
X ′

T domains. In addition, the GFK model will only work
well if the dimensionality of each point is far larger than the
number of total points.

However, none of these models explored the quality of the
learned features, i.e., the geodesic path has not been verified.
Zhang et al., [10] found that the SGF method did not provide
a correct way to sample the points along the geodesic. We
also demonstrated that the “geodesic” from the SGF model
is not the true geodesic. They then extracted features from a
pre-trained InceptionResNetv2 deep network. The deep fea-
tures contained detailed information of the object, and the
SGF-based manifold learning will destroy this information.
They also modified MEDA to form the modified distribution
alignment (MDA) model, which improves the performance of
the DA problem. The scheme of the MDA model is shown
in Fig. 14. Later, They proposed a geodesic sampling on
Riemannian manifolds (GSM) [9] model to sample interme-
diate features along the correct geodesic. In the follow-up
work, they proposed a subspace sampling demon (SSD) [54]
approach to show the detailed shape deformations and uti-
lize quantitative methods to evaluate learned features. They
also proposed a deep spherical manifold Gaussian kernel [55]
framework to map the source and target subspaces into a
spherical manifold and reduce the discrepancy between them
by embedding both extracted features and a Gaussian kernel.

5 Deep Learning Methods
With the popularity of deep learning methods, deep neu-
ral networks have shown improved performance in transfer
learning. Compared with traditional methods, deep trans-
fer learning directly improves the learning effect on differ-
ent tasks. Moreover, since deep learning directly learns from
raw data, it has two advantages over traditional methods: au-
tomatically extracting more expressive features and meeting
the end-to-end requirements in practical applications.

Deep learning methods can be classified into homoge-
neous DA and heterogeneous DA. We focus on deep ho-
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(a) SGF [53]

(b) GSM [9]

(c) SSD [54]

Figure 15: The comparison of sampling results between the two im-
ages (square and circle) with t = 0, 0.05, 0.5, 0.95, 1.

mogeneous DA. There are six categories of homogeneous
deep UDA methods: discrepancy-based, adversarial-based,
pseudo-labeling-based, reconstruction-based, representation-
based and attention-based methods as shown in Fig 2.

1. Discrepancy-based: these methods minimize the dis-
tance between the source domain and the target domain
using different statically defined distance functions.

2. Adversarial-based: these methods identify the domain
invariant features via two competing networks.

3. Pseudo-labeling-based: these methods generate pseudo
labels for the target domain to reduce the domain diver-
gence.

4. Reconstruction-based: these methods map two domains
into a shared domain while preserving domain specific
features.

5. Representation-based: these methods utilize the trained
network to extract intermediate representations as an in-
put for a new network.

6. Attention-based: these methods pay attention to regions
of interests (ROIs), which maintains shared information
of both source domain and the target domain.

5.1 Discrepancy-based methods
Discrepancy based methods are one of the most popular deep
network models, and it aims to decrease the differences be-
tween the two domains and align data distributions. Differ-
ent distance loss functions are usually added in the activa-
tion layers of networks. Discrepancy based methods can be
further divided into eight subgroups as shown in Fig. 2. We
review these different distance functions in the following sub-
sections.

Maximum Mean Discrepancy (MMD)
Maximum Mean Discrepancy (MMD) is one of the most pop-
ular distances in minimizing a distance between two distribu-
tions, as shown in Eq. (2). It measures the distributions as
the squared distance between their embeddings in the repro-
ducing kernel Hilbert space. MMD is also the equivalent to
finding the RKHS mapping function, which maximizes the

difference in expectations between the two probability distri-
butions in the following equation.

MMD(DS ,DT ) = supf∈H||EXS [f(XS)]−EXT [f(XT )]||2H,
(13)

where E is the distribution expectation, and f is a function or
classifier in the deep neural networks.

Based on MMD, Tzeng et al. [56] proposed a deep do-
main confusion (DDC) model; it minimized the following
loss function:

L = LC(XS ,YS) + λMMD2(XS ,XT ), (14)

where LC(XS ,YS) denotes the cross-entropy loss on the
available labeled data (XS ), and the ground truth labels (YS ),
and MMD2(XS ,XT ) denotes the distance between XS and
XT . The hyperparameter λ determines robustness to con-
fuse the domains. DDC model fixed the first seven layers
and added the adaptation metric (MMD) in the eighth layer.
Later, they extended the DDC model by introducing soft label
distribution matching loss [57]. Different from DDC, which

Figure 16: The scheme of the deep domain confusion (DDC) model
(image from [56]).

used a single layer and linear MMD, the deep adaptation net-
work (DAN) [58] model considered several MMDs between
several layers and explored multiple kernels for adaptation of
the deep representations.

Figure 17: The architecture of deep adaptation network (DAN)
model. The features are extracted from frozen (conv1–conv3) and
fine-tuning (conv4–conv5) layers. MK-MMD is adapted in fc6–fc8
layers (image from [58]).

Joint adaptation networks (JAN) [8] further considered
the joint distribution discrepancies (by using joint MMD
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(JMMD) criteria) of extracted features. In addition, resid-
ual transfer networks (RTN) [59] added a gated residual layer
and relaxed the DAN classifier criteria. Yan et al. [60] pro-
posed a weighted MMD (WMMD) to construct the source
distribution using the target domain to reduce the effect of
class weight bias. Recently, the multi-representation adap-
tation network (MRAN) [61] extended MMD to conditional
MMD (CMMD) to reduce the differences between domains.
Kang et al. [62] extended MMD to the contrastive domain dis-
crepancy loss. It can jointly optimize the intra-class distance
and inter-class distance for improving the adaptation perfor-
mance. Deng et al. [63] considered triplet loss to align data
distributions from domain-level and class-level. For aligning
domain level, they utilized the JMMD metric to reduce the
domain-level discrepancy, and similarity guided constraint
(SGC) to reduce the class-level discrepancy.

Correlation Alignment (CORAL)
CORAL [64] aims to align the second-order statistics (co-
variances) between the cross-domain distributions. The Deep
CORAL model extended the CORAL model into a deep ar-
chitecture, and the loss function is defined in Eq. (15).

LCORAL =
1

4d2
||CS − CT ||2F , (15)

where d is the feature dimensionality, CS and CT are the co-
variance matrices of the source data and the target data, and
|| · ||2F denotes the squared matrix Frobenius norm. Mapped
Correlation Alignment (MCA) [65] projected covariances of
different domains from Riemannian manifold to RKHS. It
can learn a non-linear mapping via combining MCA loss and
classification loss. Chen et al. [66] introduced joint discrim-
inative domain alignment (JDDA), which utilized CORAL
loss, and applied a discriminative loss to form an instance-
based and center-based discriminative learning scheme for
DA. Rahman et al. proposed a model based on the alignment
of second-order statistics (covariances) as well as maximized
the mean discrepancy of the source and target data [67].

Figure 18: The architecture of Deep CORAL model. It is based on a
CNN with a classifier layer, which adds the CORAL loss on the fc8
layer of AlexNet (image from [64]).

Kullback–Leibler Divergence (KL)
Kullback–Leibler divergence (KL) [68] aims to measure the
distance between two distributions (P (x) and Q(x)) as fol-

lows.

DKL(P ||Q) =
∑
x∈X

P (x)log
P (x)

Q(x)
, (16)

where X is the probability space, and KL divergence is an
asymmetric distance: DKL(P ||Q) 6= DKL(Q||P ). Zhuang
et al. [69] proposed an approach termed transfer learning with
deep autoencoders (TLDA), which adopted two autoencoders
for the source and the target domains via minimizing the KL
divergence. Meng et al. [70] also minimized the Kullback-
Leibler divergence between the output distributions of the
teacher and student models simultaneously to better align two
domains.

Jensen–Shannon Divergence
Jensen–Shannon divergence (JSD) [71] is derived from KL
divergence, and it is a symmetric distance.

JSDKL(P ||Q) =
1

2
DKL(P ||M) +

1

2
DKL(Q||M), (17)

where M = 1
2 (P +Q).

Jiang et al. [72] proposed resource efficient domain adap-
tation (REDA) to distill transfer features across domain by
minimizing the JSD between the probability predictions of
the major classifier and the shallower classifiers.

Figure 19: The architecture of Sliced Wasserstein discrepancy
(SWD) model (image from [73]).

Wasserstein Distance
The Wasserstein metric [74] is another discrepancy metric
to measure the distance among the different domain sam-
ples. This distance is defined in a metric space (M,ρ), and
ρ(x1, x2) is the distance between two samples as shown in
the following equation.

W (P (XS), P (XT )) = { inf
µ∈Γ(P (XS),P (XT ))∫
ρ(x1, x2)pdµ(x1, x2)}1/p

(18)

Damodaran et al. [75] jointly matched feature and label space
distributions based on Wasserstein distance, and they not only
learned the new data representations aligned between the
source and target domain, but also simultaneously preserved
the discriminative information. Sliced Wasserstein discrep-
ancy (SWD) [73] utilized the geometrical 1-Wasserstein dis-
tance as the discrepancy measure for obtaining the dissimilar-
ity probability of source and target domains.
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Mutual Information
Mutual Information (MI) [76] aims to find the similarity be-
tween two distributions in Eq. (19).

MI(P (XS), P (XT )) =
∑
x1∈XS

∑
x2∈XT

P (XS ,XT )

log
P (XS ,XT )

P (XS)P (XT )
,

(19)

Gholami et al. [77] employed a deep learning model to
jointly maximize the mutual information between the domain
labels and private (domain-specific) features while minimiz-
ing the mutual information between the domain labels and the
shared (domain-invariant) features. Xie et al. [78] disentan-
gled the content features from domain information for both
the source and translated images and then maximized the mu-
tual information between the disentangled content features to
preserve the image-objects using a discriminator.

Entropy Minimization
Entropy minimization [79] aims to find the minimal entropy
between distributions of two samples. Feature transfer net-
work (FTN) [80] first separated the transformed source do-
main and target domain using an entropy minimization loss
function to enhance the discriminative ability of FTNs in the
target domain. Later, Roy et al. [81] proposed min-entropy
consensus (MEC) method to jointly merge consistency loss
and entropy loss to improve the domain adaptation as shown
in Eq. (20).

Lt(Bt1, B
t
2) =

1

m

m∑
i=1

lt(xt1i , x
t2
i ),

where lt(xt1i , x
t2
i ) = −1

2
max
y∈Y

(log p(y|xt1i ) + log p(y|xt2i ))

(20)
where xt1i ∈ Bt1 and xt2i ∈ Bt2, and Bt1, B

t
2 are two different

target batches.
Mancini et al. [82] further incorporated MEC loss with the

multiple domain predictions on perturbations to achieve the
consistency and reduce entropy for the perturbed domain pre-
dictions of the same input features.

Figure 20: The architecture of min-entropy consensus (MEC) (im-
age from [81]).

Batch Normalization
Batch Normalization (BN) [83] has been widely used in deep
networks to decrease the covariance shift.

In multi-source DA [82], Mancini et al. extended batch
normalization of DA layer to a new batch normalization layer

(mDA-layer). This mDA-layer can re-normalize the multi-
modal feature distributions as shown in the following equa-
tion.

mDA(xi, wi, µ̂, σ̂) =
∑
d∈D

wi,d
xi − µ̂d√
σ̂2
d + ε

, (21)

where wi = [wi,d]d∈D, µ̂ = [µ̂d]d∈D and σ̂ = [σ̂2
d]d∈D.

Li et al. [84] introduced an adaptive batch normalization
(AdaBN) model to improve the generalization ability of the
deep neural network. AdaBN can change the data of BN lay-
ers of the target domain via data of the source domain and
also update the weights in CNN for DA. Change et al. [85]
proposed domain specific batch normalization (DSBN) based
on multiple sets of BN layers. The DSBN can estimate the
mean and variance of multiple domains, and it can capture
the domain-specific features, and then the domain-invariant
features can be better extracted from deep neural networks.

Figure 21: The architecture of domain specific batch normalization
(DSBN) (image from [85]).

Least Squares
Least Squares [86] aims to approach data distribution via esti-
mating the slope and intercept in the latent space. Deep least
squares alignment (DLSA) [86] first propose to minimize the
slop and intercept differences to realize domain divergence
reduction with least squares estimation. They first minimized
the marginal distribution as follows.

LM = ||âS − âT ||2F + γ||b̂S − b̂T ||2F , (22)

whereM denotes marginal distribution, || · ||F is the Frobe-
nius norm, and γ balances the scale between two terms. The
first term enforces small differences of slope between two do-
mains, while the second enforces small differences of inter-
cept between two domains. They also minimized conditional
distribution via reducing the categorical slop and intercept
differences.

Figure 22: The architecture of deep least squares alignment (DLSA)
(image from [86]).

5.2 Adversarial-based methods
Recently, adversarial-based methods have become an increas-
ingly popular method to reduce domain discrepancy between
different domains by using an adversarial objective. With
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the advent of generative adversarial networks (GAN) [87],
adversarial learning models have been found to be an im-
pactful mechanism for identifying invariant representations
in domain adaptation. Adversarial learning also contains a
feature extractor and a domain discriminator. The domain
discriminator aims to distinguish the source domain from
the target domain, while the feature extractor aims to learn
domain-invariant representations to fool the domain discrim-
inator [12; 88; 89; 13; 90; 91; 92; 93; 94; 95]. The target
domain error is expected to be minimized via minimax opti-
mization.

Figure 23: The architecture of domain adversarial neural networks
(DANN) model. It includes a feature extractor (green), a label pre-
dictor (blue), and a domain classifier (pink) (image from [96]).

The domain adversarial neural network (DANN) [96] is
one of the first adversarial methods for adversarial based DA.
DANN considered a minimax loss to integrate a gradient re-
versal layer to promote the discrimination of source and target
domains [96]. Unsupervised DA is achieved by the gradient
reversal layer that multiplies the gradient by a certain neg-
ative constant during the backpropagation-based training to
ensure that the feature distributions over the two domains are
made indistinguishable. The domain discriminator typically
minimizes the binary cross-entropy loss as follows.

LA =− 1

NS

NS∑
i=1

log(1−D(X iS))− 1

NT

NT∑
j=1

log(D(X jT ))

(23)

Figure 24: The architecture of adversarial discriminative domain
adaptation (ADDA) model. The dash lines represents fixed network
parameters (image from [12]).

The adversarial discriminative domain adaptation (ADDA)
uses an inverted label GAN loss to split the source and tar-
get domains, and features can be learned separately [12]. The
coupled generative adversarial networks [97] consisted of a
series of GANs, and each of them can represent one of the

domains. Cao et al. [98] proposed a partial transfer learn-
ing model. They noted that in the era of big data, we usu-
ally have a lot of source domain data. These source domain
data are usually richer in categories than target domain data.
For example, the image classifier based on ImageNet training
must categorize thousands of categories. When we use it in
practice, the target domain is often only a part of the cate-
gories. This leads to a problem: categories that exist only in
the source domain will have a negative impact on label mi-
gration results. The collaborative adversarial network (CAN)
[99] added several domain classifiers on multiple CNN fea-
ture extraction blocks on each domain classifier for DA. Chen
et al. [66] proposed joint domain alignment and discrimina-
tive feature learning. It benefits both domain alignment and
final classification. Two discriminative feature learning meth-
ods are proposed (instance-based and center-based), which
can guarantee the domain invariant features.

The joint adaptation network (JAN) [8] combined MMD
with adversarial learning to align the joint distribution of
multiple domain-specific layers across domains. Enhanced
transport distance (ETD) measured domain discrepancy by
establishing the transport distance of attention perception as
the predictive feedback of iterative learning classifiers [100].
Cycle-consistent adversarial domain adaptation (CyCADA)
proposed cycle-consistency loss to enforce local and global
structural consistency between two domains [101]. To im-
prove results, many methods utilize image-level adaptation
(to maintain the consistency of images during training) to
help feature alignment. Progressive domain adaptation [102]
combined feature alignment with image-level adaptation.
They first adopted a model between source and intermedi-
ate domain via image translation. The transformed images
have the same label mapped from the source domain and
are treated as simulated training images for the target do-
main. Then, the intermediate and target domains are aligned.
Zhang et al. [99] reweighted the target samples, which can
confuse the domain discriminator. The domain-symmetric
network (SymNet) is a symmetrically designed source and
target classifier based on an additional classifier. The pro-
posed category-level loss can improve the domain-level loss
by learning the invariant features between two domains [89].

Miyato et al. [103] incorporated virtual adversarial train-
ing (VAT) in semi-supervised contexts to smooth the output
distributions as a regularization of deep networks. Later, vir-
tual adversarial domain adaptation (VADA) improved adver-
sarial feature adaptation using VAT. It generated adversarial
examples against only the source classifier and adapted on
the target domain [104]. Unlike VADA method, transfer-
able adversarial training (TAT) adversarially generated trans-
ferable examples that fit the gap between source and target
domain [13]. Xu et al. [105] constructed a GAN-based ar-
chitecture named adversarial domain adaptation with domain
mixup (DM-ADA). It maps the two domains to a common po-
tential distribution, and effectively transfers domain knowl-
edge. Zhang et al. [106] introduced a hybrid adversarial net-
work (HAN) to minimize the source classifier loss, condi-
tional adversarial loss, and correlation alignment loss. A new
adaptation layer was used to further improve the performance
in the HAN model.
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5.3 Pseudo-labeling-based methods
Pseudo-labeling is another technique to address UDA and
also achieves substantial performance on multiple tasks.
Pseudo-labeling typically generates pseudo labels for the tar-
get domain based on the predicted class probability [107; 108;
99; 109; 110]. Under such a regime, some target domain la-
bel information can be considered during training. In deep
networks, the source classifier is usually treated as an initial
pseudo labeler to generate the pseudo labels (and use them
as if they were real labels). Different algorithms are pro-
posed to obtain additional pseudo labels and promote distri-
bution alignment between the two domains. An asymmet-

Figure 25: The architecture of progressive feature alignment net-
work (PFAN) (image from [109]).

ric tri-training method for UDA has been proposed by Saito
et al. to generate pseudo labels for target samples using two
networks, and the third can learn from them to obtain tar-
get discriminative representations [107]. Xie et al. [108] pro-
posed a moving semantic transfer network (MSTN) to de-
velop semantic matching and domain adversary losses to ob-
tain pseudo labels. Zhang et al. [99] designed a new criterion
to select pseudo-labeled target samples and developed an iter-
ative approach called incremental collaborative and adversar-
ial network (iCAN), in which they select samples iteratively
and retrain the network using the expanded training set. Pro-
gressive feature alignment network (PFAN) [109] aligns the
discriminative features across domains progressively and em-
ploys an easy-to-hard transfer strategy for iterative learning.
Chang et al. [85] proposed to combine the external UDA al-
gorithm and the proposed domain-specific batch normaliza-
tion to estimate the pseudo labels of samples in the target do-
main and more effectively learn the domain-specific features.
Constrictive adaptation network (CAN) also employed batch
normalization layers to capture the domain-specific distribu-
tions [62]. Zhang et al. [111] offers a label propagation with
augmented anchors (A2LP) method to improve label propa-
gation via generation of unlabeled virtual samples with high
confidence label prediction. Adversarial continuous learning
in UDA (ACDA) [110] increased robustness by incorporat-
ing high-confidence samples from the target domain to the
source domain. They further proposed a pre-trained features
selection and recurrent pseudo-labeling (PRPL) [29] model
to continuously generate high-quality pseudo labels.

5.4 Reconstruction-based methods
Reconstruction based methods aim to reconstruct all domain
samples to make better representations of domains, while pre-
serving domain specific features.

Encoder-decoder style is one representative reconstruction
based method. It first encodes input images to some hidden

Figure 26: The architecture of domain separation networks (DSN)
model. It consists of four loss functions: lclass, lrecon, ldifference

and lsimilarity (image from [112]).

features by the encoder, then decodes these features back for
reconstructed images by the decoder. The domain-invariant
features are learned by a shared encoder while domain-
specific features are preserved by reconstruction loss [113].
Stacked denoising autoencoders (SDA) [114] is one of the
first deep models for domain adaptation and aimed to find
the common features between source and target domains via
denoising autoencoders. The objective function is defined in
Eq. 24.

θ?θ
′? = arg min

θ?θ′?

1

n

n∑
i=1

L(x(i), z(i))

= arg min
θ?θ′?

1

n

n∑
i=1

L(x(i), gθ′(fθ(x
(i)))),

(24)

where x is the input vector, L is the loss function, which is
squared error: L(x, z) = ||x− z||2, θ is the parameter in the
autoencoders, and f and g are mapping functions.

To reduce the computational costs of SDA model, Chen
et al. [115] introduced a marginalized SDA (mSDA) model
to denoise the marginal noise with a closed-form solution
without using a stochastic gradient descent strategy. Multi-
task autoencoder (MTAE) [116] learned intra- and inter-
domain reconstruction to represent domain invariances. Ghi-
fary et al. [113] proposed a deep reconstruction classifica-
tion network (DRCN) to learn a shared encoding representa-
tion, which aims to minimize domain discrepancy. Zhang et
al. [117] proposed transfer learning with deep auto-encoders
using Kullback–Leibler divergence to reduce the discrepancy
between the source and target distributions. Domain separa-
tion networks (DSN) [112] introduced the notion of a private
subspace for each domain, which captures domain-specific
properties, such as background and low-level image statistics.
The shared subspace is enforced through the use of autoen-
coders and explicit loss functions, which can capture com-
mon features between the two domains. The loss function is
defined as following:

l = ltask + αlrecon + βldifference + γlsimilarity, (25)
where ltask is the loss of the training, lrecon is the loss of the
reconstruction, ldifference is the difference between public
and private space, and lsimilarity is the similarity of public
space of source and target domain. The architecture of DSN
is shown in Fig.26.
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5.5 Representation-based methods
Representation based methods utilize the trained network to
extract intermediate representations as an input for a new net-
work.

Figure 27: The architecture of cross domain representation disen-
tangler (CDRD) model (image from [118]).

One common method is called disentanglement represen-
tation, which is based on class labels to gain invariant fea-
ture representation. Cross domain representation disentangler
(CDRD) [118] bridged the labeled source domain and unla-
beled target domain by jointly learning cross-domain feature
representation disentanglement and adaptation. The com-
mon space is optimized with both the labeled source do-
main and the unlabeled target domain. Hence, the shared
weighted common space can bridge the gap between high and
coarse-level representations of cross-domain data. Gonzalez
et al. [119] proposed an image-to-image translation for rep-
resentation disentangling based on GANs and cross-domain
autoencoders. They separated the internal representation
into three parts: a shared part, which contains the domain-
invariant features for two domains; and two exclusive parts,
which contain the domain-specific features. Their model can
be applied to multiple tasks, such as diverse sample genera-
tion, cross-domain retrieval, domain-specific image transfer,
and interpolation. Liu et al. [120] introduced a unified feature
disentanglement network (UFDN) to learn domain-invariant
representation from multiple domains for image translation
and manipulation. Peng et al. [121] minimized mutual infor-
mation between domain-specific and domain-invariant fea-
tures to pursue implicit domain-invariant features, which
can improve the performance of the target domain. Gho-
lami et al. [77] presented a multi-target domain adaptation
information-theoretic approach (MTDA-ITA) to find a shared
latent space of all domains by simultaneously identifying
the remaining private domain-specific factors. They utilized
a unified information-theoretic approach to disentangle the
shared and private information while establishing a connec-
tion between latent representations and the observed data.
Their model can adapt from a single source to multiple target
domains. However, these disentanglement-based methods are

still difficult to guarantee the full separation between domain-
specific features and domain invariant features. Also, the re-
construction of these two features is less considered. Zhang
et al. [122] propose an enhanced separable disentanglement
(ESD) model. It can teach a disentangler to distill domain-
specific and domain-invariant features from the two domains.
They then applied feature separation maximization processes
to enhance the disentangler to remove contamination between
these two features. A reconstructor is used to recover original
feature prototypes to further improve the performance of the
model.

Figure 28: The architecture of enhanced separable disentanglement
(ESD) model (image from [122]).

5.6 Attention-based methods
Attention based methods pay attention to region of interests
(ROIs) from the source domain to the target domain, which
can make the deep neural networks focus on some spatial
parts of both domains.

Wang et al. [123] proposed a residual attention network
(RAN), which added an attention mechanism in a convolu-
tional neural network. RAN can generate attention-aware fea-
tures via stacking attention modules. The attention module
contains three key parameters: the number of pre-processing
Residual Units before splitting into the trunk branch and mask
branch, the number of Residual units in the trunk branch, and
the number of Residual units between the adjacent pooling
layer in the mask branch. However, RAN has the issue of
negative local attention in transferring tasks. Later, the trans-
ferable attention for domain adaptation (TADA) model re-
duced the effects of negative transfer. It applied transferable
global attention based on local attention. There are two types
of complementary transferable attention: local attention can
generate transferable regions by multiple region-level domain
discriminators, and global attention can generate transferable
images by image-level domain discriminator.

Zhuo et al. [124] presented a deep unsupervised convolu-
tional domain adaptation (DUCDA) model, which consists of
source classification loss and correlation alignment (CORAL)
loss. The CORAL loss measured the discrepancy between at-
tention maps for both source and target domains, and it was
used on both convolutional layers and fully connected layers.
Moon et al. [125] proposed completely heterogeneous trans-
fer learning (CHTL) to filter and suppress irrelevant source
samples using an attention mechanism and designed an un-
supervised transfer loss to learn the knowledge between two
domains. Kang et al. [126] presented a deep adversarial at-
tention alignment model, which transfers knowledge in all the
convolutional layers via attention alignment. In addition, they
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Figure 29: The architecture of residual attention network (RAN)
(image from [123]).

estimated the posterior label distribution of the unlabeled do-
main, and they utilized category distribution to calculate the
cross-entropy loss for training in improving predicting accu-
racy.

6 Datasets & SOTA results
In this section, we list benchmark datasets for visual do-
main adaptation. These datasets are important since they are
widely used to evaluate the performance of domain adapta-
tion models. Table 1 summarized the statistics of eight bench-
mark datasets.

6.1 Office + Caltech-10
This dataset [47] is a standard benchmark for domain adap-
tation, which consists of Office 10 and Caltech 10 datasets.
It contains 2,533 images in four domains in ten categories:
Amazon, Webcam, DSLR, and Caltech. Amazon images are
mostly from online merchants; DSLR and Webcam images
are mostly from offices. Caltech images are from more real-
world backgrounds. Fig. 30 shows sample images from the
Office + Caltech-10 dataset.

Figure 30: Sample images from four categories across the four do-
mains of the Office + Caltech-10 dataset (image from [3]).

6.2 Office-31
Office-31 [127] is another benchmark dataset for domain
adaptation, and it consists of 4,110 images in 31 classes from
three domains: Amazon, which contains images from ama-
zon.com; Webcam and DSLR, both contain images that are
taken by a web camera or a digital SLR camera with differ-
ent settings. Fig. 31 shows sample images from the Office-31
dataset.

Figure 31: Sample images from three domains of the Office-31
dataset. We select images from six categories (image from [3]).

6.3 Office-Home
Office-Home [128] contains 15,588 images in 65 categories
across four domains. Specifically, Art denotes artistic depic-
tions for object images; Clipart describes picture collections
of clipart; Product shows object images with a clear back-
ground and is similar to Amazon category in Office-31, and
Real-World represents object images collected with a regu-
lar camera. It is a challenging dataset since the domain di-
vergence between different domains is larger. Fig. 32 shows
sample images from the Office-Home dataset.

Figure 32: Sample images from four domains of the Office-
Home dataset. We only show images from four categories (image
from [3]).

6.4 MNIST-USPS
The MNIST-USPS dataset contains handwritten digit images
and consists of the MNIST dataset [129] and the US Postal
(USPS) dataset [130]. Each dataset has ten categories. The
MNIST dataset is derived from the National Institute of Stan-
dards and Technology (NIST) dataset. The MNIST dataset
has 60,000 training samples and 10,000 test samples. The
USPS dataset obtains recognized handwritten digits. The
training set and the test set have 7291 and 2007 samples, re-
spectively.

Figure 33: Sample images from MNIST, USPS, and SVHN dataset
(image from [3]).

6.5 SVHN
The SVHN dataset [131] has images from the street view
house number from Google. This dataset is challenging due
to changes in shape and textures, and extraneous numbers
with the labeled image. It has over 600,000 digit images
with ten classes. Fig. 33 shows sample images from MNIST,
USPS, and SVHN dataset, respectively.

6.6 VisDA-2017
This dataset [132] is closer to practical application scenarios
and is a challenging dataset due to the significant domain-
shift between the synthetic images (152,397 images from
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VisDA) and the real images (55,388 images from COCO)
from 12 classes. The 12 classes are plane, bicycle, bus, car,
horse, knife, motorcycle, person, plant, skateboard, train and
truck as shown in Fig. 34.

Figure 34: Sample images of twelve classes from VisDA-2017
dataset (image from [3]).

6.7 ImageCLEF-DA
ImageCLEF-DA [133] dataset is from ImageCLEF 2014 do-
main adaptation challenge. It contains three domains with a
total of 600 images, which are formed by selecting images
from three public datasets, including Caltech-256 (C), Ima-
geNet ILSVRC 2012 (I), and Pascal VOC 2012 (P). Each do-
main consists of 12 categories, and each category contains 50
images. The 12 classes are aeroplane, bike, bird, boat, bottle,
bus, car, dog, horse, monitor, motorbike, and people as shown
in Fig. 35.

Figure 35: Sample images from four domains of the ImageCLEF-
DA dataset. We only show images from four categories (image
from [3]).

6.8 Amazon Reviews
Amazon Reviews [134] is a multi-domain sentiment dataset
that contains product reviews taken from Amazon.com of
four domains (Books, Kitchen, Electronics and DVDs). Each
review in the four domains has a text and a rating from zero
to five.

6.9 PIE
The Carnegie Mellon University (CMU) Pose, Illumination,
and Expression (PIE) database [135] contains 41,368 images
of 68 people, where each person is represented under 13, 43,
and 4, different poses, illuminations, and expressions, respec-
tively. It has five subsets containing left pose, up pose, down
pose, front pose, and right pose.

6.10 COIL20
Columbia Object Image Library (COIL20) [136] is a dataset
of 1,440 normalized images with 20 object categories. The
images are at pose intervals of 5 degrees.

Table 1: Statistics of benchmark datasets
Dataset # Sample # Class Domain(s)

Office-10 1,410 10 A, W, D
Caltech-10 1,123 10 C
Office-31 4,110 31 A, W, D

Office-Home 15,588 65 Ar, Cl, Pr, Rw
MNIST-USPS-SVHN 672,298 10 M, U, S

VisDA-2017 207,785 12 Synthetic, Real
ImageCLEF-DA 1,800 12 C, I, P
Amazon Reviews 8,000 2 B, K, E, D

Table 2: Statistics on PlantCLEF 2020 dataset

Domain# Samples# Classes
Herbarium (H) 320,750 997

Herbarium photo associations (A) 1,816 244
Photo (P) 4,482 375

Test (T) 3,186 -

Figure 36: Example images of the herbarium domain and photo do-
main. The large discrepancy between the two domains causes diffi-
culty in improving the performance of the model (image from [3]).

6.11 PlantCLEF 2020
This dataset is a large-scale dataset of the PlantCLEF 2020
task [150]. Fig. 36 shows some challenging images in this
dataset. Tab. 2 lists the statistics on PlantCLEF 2021 dataset.
The herbarium domain contains 320,750 images in 997
species, and the number of images in different species are un-
balanced. This dataset consists of herbarium sheets whereas
the test set will be composed of field pictures. The validation
set consists of two domains herbarium photo associations
and photos. Herbarium photo associations domain includes
1,816 images from 244 species. This domain contains both
herbarium sheets and field pictures for a subset of species,
which enables learning a mapping between the herbarium
sheets domain and the field pictures domain. Another photo
domain has 4,482 images from 375 species and images are
from plant pictures in the field, which is similar to the test
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Table 3: Accuracy (%) on Office + Caltech-10 (based on ResNet50)
Task C�A C�W C�D A�C A�W A�D W�C W�A W�D D�C D�A D�W Ave.

GSM [9] 96.0 95.9 96.2 94.6 89.5 92.4 94.1 95.8 100 93.9 95.1 98.6 95.2
BDA [44] 94.7 93.2 96.8 89.0 87.8 87.9 86.5 92.0 99.4 86.2 92.3 97.3 91.9

TJM [2] 94.7 86.8 86.6 83.6 82.7 76.4 88.2 90.9 98.7 87.4 92.5 98.3 88.9
JGSA [43] 95.1 97.6 96.8 93.9 94.2 96.2 95.1 95.9 100 94.0 96.3 99.3 96.2

MEDA [45] 96.3 98.3 96.2 94.6 99.0 100 94.8 96.6 100 93.6 96.0 99.3 97.0
DDC [56] 91.9 85.4 88.8 85.0 86.1 89.0 78.0 83.8 100 79.0 87.1 97.7 86.1

DCORAL [64] 89.8 97.3 91.0 91.9 100 90.5 83.7 81.5 90.1 88.6 80.1 92.3 89.7
DAN [58] 92.0 90.6 89.3 84.1 91.8 91.7 81.2 92.1 100 80.3 90.0 98.5 90.1
RTN [59] 93.7 96.9 94.2 88.1 95.2 95.5 86.6 92.5 100 84.6 93.8 99.2 93.4

MDDA [67] 93.6 95.2 93.4 89.1 95.7 96.6 86.5 94.8 100 84.7 94.7 99.4 93.6
DLSA [86] 96.6 98.6 98.1 95.4 98.9 100 95.3 96.6 100 95.1 96.2 98.3 97.4

Table 4: Accuracy (%) on Office-Home dataset (based on ResNet50)
Task Ar�Cl Ar�Pr Ar�Rw Cl�Ar Cl�Pr Cl�Rw Pr�Ar Pr�Cl Pr�Rw Rw�Ar Rw�Cl Rw�Pr Ave.

GSM [9] 49.4 75.5 80.2 62.9 70.6 70.3 65.6 50.0 80.8 72.4 50.4 81.6 67.5
JGSA [43] 45.8 73.7 74.5 52.3 70.2 71.4 58.8 47.3 74.2 60.4 48.4 76.8 62.8

MEDA [45] 49.1 75.6 79.1 66.7 77.2 75.8 68.2 50.4 79.9 71.9 53.2 82.0 69.1
ResNet-50 [137] 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1

DAN [58] 43.6 57.0 67.9 45.8 56.5 60.4 44.0 43.6 67.7 63.1 51.5 74.3 56.3
DANN [138] 45.6 59.3 70.1 47.0 58.5 60.9 46.1 43.7 68.5 63.2 51.8 76.8 57.6

JAN [8] 45.9 61.2 68.9 50.4 59.7 61.0 45.8 43.4 70.3 63.9 52.4 76.8 58.3
CDAN-M [88] 50.6 65.9 73.4 55.7 62.7 64.2 51.8 49.1 74.5 68.2 56.9 80.7 62.8

TAT [13] 51.6 69.5 75.4 59.4 69.5 68.6 59.5 50.5 76.8 70.9 56.6 81.6 65.8
ETD [100] 51.3 71.9 85.7 57.6 69.2 73.7 57.8 51.2 79.3 70.2 57.5 82.1 67.3

TADA [139] 53.1 72.3 77.2 59.1 71.2 72.1 59.7 53.1 78.4 72.4 60.0 82.9 67.6
SymNets [89] 47.7 72.9 78.5 64.2 71.3 74.2 64.2 48.8 79.5 74.5 52.6 82.7 67.6
DCAN [140] 54.5 75.7 81.2 67.4 74.0 76.3 67.4 52.7 80.6 74.1 59.1 83.5 70.5
RSDA [141] 53.2 77.7 81.3 66.4 74.0 76.5 67.9 53.0 82.0 75.8 57.8 85.4 70.9

SPL [142] 54.5 77.8 81.9 65.1 78.0 81.1 66.0 53.1 82.8 69.9 55.3 86.0 71.0
ESD [122] 53.2 75.9 82.0 68.4 79.3 79.4 69.2 54.8 81.9 74.6 56.2 83.8 71.6
DLSA [86] 56.3 79.4 82.5 67.4 78.4 78.6 69.4 54.5 82.1 75.3 56.4 83.7 71.7

SHOT [143] 57.1 78.1 81.5 68.0 78.2 78.1 67.4 54.9 82.2 73.3 58.8 84.3 71.8

Table 5: Accuracy (%) on VisDA-2017 dataset (based on ResNet101)
Task plane bcycl bus car horse knife mcycl person plant sktbrd train truck Ave.

Source-only [137] 55.1 53.3 61.9 59.1 80.6 17.9 79.7 31.2 81.0 26.5 73.5 8.5 52.4
DANN [138] 81.9 77.7 82.8 44.3 81.2 29.5 65.1 28.6 51.9 54.6 82.8 7.8 57.4

DAN [58] 87.1 63.0 76.5 42.0 90.3 42.9 85.9 53.1 49.7 36.3 85.8 20.7 61.1
JAN [8] 75.7 18.7 82.3 86.3 70.2 56.9 80.5 53.8 92.5 32.2 84.5 54.5 65.7

MCD [144] 87.0 60.9 83.7 64.0 88.9 79.6 84.7 76.9 88.6 40.3 83.0 25.8 71.9
DMP [145] 92.1 75.0 78.9 75.5 91.2 81.9 89.0 77.2 93.3 77.4 84.8 35.1 79.3

DADA [146] 92.9 74.2 82.5 65.0 90.9 93.8 87.2 74.2 89.9 71.5 86.5 48.7 79.8
STAR [147] 95.0 84.0 84.6 73.0 91.6 91.8 85.9 78.4 94.4 84.7 87.0 42.2 82.7
SHOT [143] 94.3 88.5 80.1 57.3 93.1 94.9 80.7 80.3 91.5 89.1 86.3 58.2 82.9

DSGK [148] 95.7 86.3 85.8 77.3 92.3 94.9 88.5 82.9 94.9 86.5 88.1 46.8 85.0
CAN [62] 97.9 87.2 82.5 74.3 97.8 96.2 90.8 80.7 96.6 96.3 87.5 59.9 87.2

DLSA [86] 96.9 89.2 85.4 77.9 98.3 96.9 91.3 82.6 96.9 96.5 88.3 60.8 88.4

dataset. The test dataset contains 3,186 unlabeled images.
Due to the significant difference between herbarium and
real photos, it is extremely difficult to identify the correct
class [151; 152].

6.12 State-of-the-art results of image recognition
As shown in Tab. 3-Tab. 6, we provide the results of four
benchmark datasets (Office + Caltech-10, Office-31, Office-
Home and VisDA-2017). In this experiment, C � A means
learning from existing domain C, and transferring knowl-

edge to classify domain A. These results indicate that deep
learning-based methods usually achieve better performance
than traditional methods. However, some traditional methods
([45; 10]) observe higher accuracy than some deep learning-
based methods. This is mainly because the extracted features
are from pre-trained deep neural networks. Therefore, there
is a trend of combining traditional based methods with deep
learning features. Also, deep learning models with pseudo-
labeling techniques achieve promising results.
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Table 6: Accuracy (%) on Office-31 (ResNet50)
Task A�W A�D W�A W�D D�A D�W Ave.

GSM [9] 85.9 84.1 75.5 97.2 73.6 95.6 85.3
BDA [44] 77.0 79.3 70.3 97.0 68.0 93.2 80.8
JGSA [43] 89.1 91.0 77.9 100 77.6 98.2 89.0

MEDA [45] 91.7 89.2 77.2 97.4 76.5 96.2 88.0
RTN [59] 84.5 77.5 64.8 99.4 66.2 96.8 81.6

ADDA [12] 86.2 77.8 68.9 98.4 69.5 96.2 82.9
JAN [8] 85.4 84.7 70.0 99.8 68.6 97.4 84.3

DMRL [149] 90.8 93.4 71.2 100 73.0 99.0 87.9
TAT [13] 92.5 93.2 73.1 100 73.1 99.3 88.4

TADA [139] 94.3 91.6 73.0 99.8 72.9 98.7 88.4
SymNets [89] 90.8 93.9 72.5 100 74.6 98.8 88.4
SHOT [143] 90.1 94.0 74.3 99.9 74.7 98.4 88.6

SPL [142] 92.7 93.0 76.8 99.8 76.4 98.7 89.6
CAN [62] 94.5 95.0 77.0 99.8 78.0 99.1 90.6

RSDA [141] 96.1 95.8 78.9 100 77.4 99.3 91.3
DLSA [86] 95.2 96.2 80.4 99.2 80.7 98.0 91.6

7 Conclusions
In this survey, we first introduce some basic notation for un-
supervised domain adaptation, then review existing research
in the context of UDA and describe benchmark datasets with
some state-of-the-art performance. We focus on two cate-
gories of image recognition methods: traditional methods and
deep learning based methods.

Traditional methods rely on different feature extraction
techniques to better represent images of the two domains. We
discuss these methods from three directions: feature selec-
tion, distribution alignment, and subspace learning. Specif-
ically, we illustrate three settings of distribution alignment:
marginal, conditional, and joint distribution alignment.

We present the deep learning based UDA from six
directions: discrepancy-based, adversarial-based, pseudo-
labeling-based, reconstruction-based, representation-based,
and attention-based methods. Specifically, we review eight
different discrepancy based methods: maximum mean dis-
crepancy, correlation alignment, Kullback–Leibler diver-
gence, Jensen–Shannon divergence, Wasserstein distance,
mutual information, entropy minimization, batch normaliza-
tion, and least squares estimation.

Although both traditional and deep learning-based meth-
ods have been proposed to solve the domain shift issue, they
both have some limitations. Traditional methods heavily rely
on the extracted deep features from well-trained neural net-
works to achieve better performance. Deep learning-based
methods usually take a long computation time to train the im-
ages from scratch. In real-world applications, how to better
extract deep features from images and design incremental and
online UDA algorithms can be promising directions.
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